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Growth and characterization of superconducting Ca1−𝑥Na𝑥Fe2As2
single crystals by NaAs-flux method
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High-quality superconducting Ca1−xNaxFe2As2 single crystals have been successfully grown by the NaAs-flux
method, with sodium doping level x = 0.4–0.64. The typical sizes of these crystals are more than 10 mm in ab-plane
and ∼ 0.1 mm along c-axis in thickness. X-ray diffraction, resistance and magnetization measurements are carried out to
characterize the quality of these crystals. While no signature of magnetic phase transitions is detected in the normal state,
bulk superconductivity is found for these samples, with a sharp transition at Tc ranging from 19.8 K (x = 0.4) to 34.8 K
(x = 0.64). The doping dependences of the c-axis parameter and Tc are consistent with previous reports, suggesting a
possible connection between the lattice parameters and superconductivity.
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1. Introduction

Unconventional superconductivity emerges either from
stoichiometric or doped cuprates, nickelates, pnictides, and
chalcogenides,[1–6] or from pressure tuned heavy fermion
compounds, Cr-based and Mn-based compounds.[7–12] It is a
great challenge to reveal the microscopic mechanism of su-
perconductivity in these materials due to various phases co-
existing or competing with each other.[3,5] To achieve such a
goal, high quality crystals are certainly essential for the ex-
ploration of those complex interactions among electrons and
atoms.[12–22] For iron arsenide superconductors, the crystal
growth methods are quite limited due to the highly toxic ar-
senic vapor.[23] Usually, the iron arsenide crystals are grown
by flux methods in sealed quartz tubes, where the flux could
be NaCl/KCl mixture, Sn, FeAs, NaF, CaAs, NaAs, KAs,
etc.[24–53] At the early stage, the 1111-type iron-based super-
conductor (FeSC) LaFeAsO1−xFx were grown by NaCl/KCl
flux,[24–26] and the obtained crystals with several micrometer
sizes are only suitable for transport measurements.[27,28] Later,
the 122-type FeSCs are grown by Sn flux or FeAs self-flux
methods, which significantly improve the sample sizes to cen-
timeter scale but probably with some impurity phases.[29–35]

Similar grown applications are successful in other systems
such as 111-type, 112-type, and 1144-type FeSCs.[36–43] Af-
ter that, the NaF, CaAs, NaAs, KAs fluxes with lower melting

points are demonstrated to be very useful to grow the 1111-
type FeSCs as well as other systems.[44–49] In particular, the
hole-like 12422-type systems and the hoped-doped 122-type
FeSCs grown by NaAs or KAs show very homogeneous qual-
ity and bulk superconductivity.[50–55]

The 122-type FeSCs are the most extensively studied
systems due to available crystals with high quality and large
sizes.[14–17] The parent compound of the ‘122’ families is typ-
ically in the form of AeFe2As2 (Ae=alkaline earth metal,
e.g., Ca, Sr, Ba), exhibiting both antiferromagnetic (AF) and
structural phase transitions from 138 K to 203 K.[56–59] Su-
perconductivity can be induced by hole (e.g., Na and K),
electron (e.g., Ni, Co, Cu, Rh, Ir, Pd, La, Ce, and Pr),
or isovalent (e.g., P and Ru) dopings on the alkaline earth
metal, iron, and arsenic sites, respectively.[60–77] While the
FeAs self-flux method can produce high quality crystals for
those electron doped compounds throughout the phase di-
agram, homogeneous and tunable superconductivity in the
hole doped compounds is still a challenge.[33–35,54,55] The
122-type FeSCs generally host a phase diagram with com-
peting AF order and superconductivity similar to cuprates,
but the details of the phase diagram strongly depend on the
alkaline earth metal and the doped elements.[14,15] For exam-
ple, in the electron doped systems such as Ba(Fe1−xNix)2As2

or Ba(Fe1−xCox)2As2, the long-range stripe-type AF or-
der in the orthorhombic lattice is gradually suppressed
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and degenerates to a short-range order finally disappear-
ing above Tc near the optimal doping level.[78–81] The
cases become more complicated in the hole doped sys-
tems, such as Ba1−xKxFe2As2,[82] Ba1−xNaxFe2As2,[83,84]

Sr1−xNaxFe2As2,[85,86] and Ca1−xNaxFe2As2,[87] a tetrago-
nal magnetic phase (so-called C4 phase) with ordered mo-
ments along c-axis is revealed to competing with the or-
thorhombic magnetic phase (so-called C2 phase) just before
the optimal doping level in the underdoped region, the C2

phase may reentry at low temperature in Ba1−xKxFe2As2 and
Ca1−xNaxFe2As2.[82,87] Moreover, the superconducting dome
for the same doped element is significantly distinct among
Ba-, Sr-, and Ca-122 systems. Like say, the maxi-
mum Tc = 30–35 K locates at x = 0.4, 0.55, and 0.75
for Ba1−xNaxFe2As2, Sr1−xNaxFe2As2, Ca1−xNaxFe2As2,
respectively.[84–89] The Ca-122 compounds show a unique col-
lapse tetragonal phase where both the AF fluctuations and su-
perconductivity may be absent.[90–93] All these facts suggest
that the chemical doping induced changes on the local crys-
talline structure are crucial to the electronic ground states in
FeSCs besides the charge carrier concentration. Thus, further
investigations on this issue are highly desired to understand
the unconventional superconductivity in FeSCs, counting on
high-quality and sizeable single crystals.

In this paper, we report a method to grow sizeable and ho-
mogenous Ca1−xNaxFe2As2 single crystals with doping level
from x = 0.4 to x = 0.64. While AF order is absent in
these batches of crystals, bulk superconductivity is found
with transition temperatures ranging from Tc = 20 K in the
x = 0.4 sample to Tc = 34.5 K in the optimally doped x =

0.64 sample. Compared to the FeAs self-flux method, this
NaAs self-flux method is quite hard to reach the very un-
derdoped level in Ca1−xNaxFe2As2. We summarize the re-
sults of Ca1−xNaxFe2As2 in the literature and compare with
the Ba1−xKxFe2As2 system from underdoped region to opti-
mal doping level. A linear dependence of c-axis parameter
and a parabolic dependence of Tc versus the doping level x
are found, respectively, suggesting a quantitative connection
between the local crystalline structure and the unconventional
superconductivity in FeSCs.

2. Experimental details
We used NaAs as flux to grow the Ca1−xNaxFe2As2 sin-

gle crystals. Firstly, three precursors NaAs, CaAs and Fe2As
were prepared with highly pure raw materials Na(> 99.5%),
Ca(> 99.9%), Fe(> 99.5%) and As(> 99.99%) by the solid
state reaction method in evacuated and sealed quartz tubes.
NaAs was synthesized by mixing many small pieces of Na
and As powders and reacting at 400 ◦C for 20 h. CaAs was
prepared by mixing Ca grains and As powders and reacting at
400 ◦C for 20 h then keeping at 630 ◦C for another 20 h. Fe2As

was synthesized by reacting the mixture of Fe and As powders
at 500 ◦C for 10 h then at 700 ◦C for another 10 h. All heating
process should be very carefully and gently under a rate less
than 20 ◦C/h, to avoid the danger from vapor of these raw ma-
terials. Secondly, these three precursors were mixed together
at a molar ratio of CaAs : Fe2As : NaAs = (1− x) : 1 : (x+3)
to grow Ca1−xNaxFe2As2 single crystals. After grinding for
about 30 min, the mixture was loaded in an alumina cru-
cible and then sealed under argon atmosphere in an Nb tube,
this tube was further sealed in an evacuated quartz ampoule.
Thirdly, the sealed mixture was placed in a box furnace and
slowly heated up to 600 ◦C and kept warm for 5 h to fully
melt the NaAs flux, it was then heated to 980 ◦C at a rate of
0.76 ◦C/min, and to 1150 ◦C at a rate of 0.425 ◦C/min, hold
for 24 h to melt the CaAs (melting point about 650 ◦C) and
Fe2As (melting point about 930 ◦C) materials, followed by
slowly cooling down to 650 ◦C at a rate of 2 ◦C/h to grow the
crystals. Finally, the electricity of the furnace was turned off
to cool down the mixture to room temperature naturally, until
it is safe to fetch out. Large pieces of Ca1−xNaxFe2As2 single
crystals were obtained after crashing the tubes and cleaning
the NaAs flux. Residual NaAs flux on the crystal surface can
be fully dissolved in the deionized water.

The crystal surface morphology and distribution of el-
ements were examined by a scanning electron microscope
(SEM) equipped with energy dispersive x-ray (EDX) analyzer.
The chemical compositions of our crystals were determined
by the inductively coupled plasma (ICP) analysis. The crys-
talline quality and doping effects on the lattice parameters
were checked by single-crystal x-ray diffraction (XRD) on a
9 kW high-resolution diffraction system (SmartLab) with Cu
Kα radiation (λ = 1.5406 Å) at room temperature in the reflec-
tion mode, with 2θ ranging from 10◦ to 65◦. The Laue pattern
was collected by an x-ray Laue camera (Photonic Sciences) in
backscattering mode with incident beam along c-axis. The re-
sistivity was measured by the standard four-probe method in
a physical property measurement system (Quantum Design-
PPMS). The DC-magnetic susceptibility was measured with
the zero-field-cooling (ZFC) method and a small field H =

3 Oe in parallel c-axis in a magnetic property measurement
system (Quantum Design-MPMS).

3. Results and discussion
We have successfully grown 5 batches of

Ca1−xNaxFe2As2 single crystals with nominal doping x = 0.3,
0.4, 0.5, 0.6, 0.7. The actual doping concentration x′ is de-
termined by the ICP method and listed in Table 1, where the
relative errors are about 5% as estimated from the analyses
on several pieces of crystals. Due to the excess NaAs precur-
sor as the flux in the mixture, even a small nominal x could
result in significant actual dopings, giving x′ = 0.2+ 0.64x.
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Such effect hampers us to reach low doping level in the under-
doped region in comparison to the FeAs-flux method.[33,94,95]

For high doping levels, the Na concentration seems to
reach a saturation point in this method. So far, overdoped
Ca1−xNaxFe2As2 crystals are still very hard to obtain, but
overdoped Ba1−xKxFe2As2 including KFe2As2 can be grown
by the KAs-flux method.[54,55,96,97] In the following, we use
the actual doping level to refer to our samples. The homogene-
ity of our crystals is examined by SEM and EDX analyses, the
results of three typical dopings x = 0.40, 0.44, and 0.64 are
shown in Fig. 1. The SEM photos show flat surfaces with
some crack edges from different layers. EDX analyses on four
elements all exhibit homogenous distributions.
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Fig. 1. (a)–(c) SEM photos of the cleaved surfaces and element distri-
bution analyses for Ca1−xNaxFe2As2 (x =0.40, 0.44 and 0.64) crystals.
(b) A typical EDX spectrum for one single crystal with x = 0.64.
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Fig. 2. (a) The x-ray diffraction patterns at room temperature for
Ca1−xNaxFe2As2 single crystals. (b) A photo of Ca0.6Na0.4Fe2As2
platy monocrystal. (c) Typical Laue reflection at room temperature for
our crystals.

The crystalline quality is checked by x-ray diffraction
and presented in Fig. 2. Figure 2(a) shows the XRD pat-
terns with the incident beam along the c-axis of our crys-
tals. All diffraction peaks indexed as (0,0, l) (l = even) are
sharp and no diffraction from impurity phases is observed.
With the increase of Na doping, the 2θ of the last peak

shifts to low angle side, suggesting increasing c-axis lattice
parameter. We have calculated the c-axis parameter by fit-
ting the peak positions and listed in Table 1. The photo in
Fig. 2(b) shows the typical sizes of our Ca1−xNaxFe2As2 sin-
gle crystals. The dimensions of the largest crystal are about
17 mm× 16 mm× 0.5 mm. The cleaved surface is shiny un-
der the light, and the texture is brittle. The Laue reflection in
ab-plane for Ca0.36Na0.64Fe2As2 is shown in Fig. 2(c). Again,
the bright and sharp scattering spots indicate the high quality
of this sample, clear orientations along [1,0,0] and [1,1,0] of
the crystal can be easily identified.

Table 1. Doping concentrations, c-axis parameter, and Tc of our
Ca1−xNaxFe2As2 single crystals.

Nominal x Actual x c-axis lattice constant (Å) Tc (K)
0.3 0.40 12.03 19.8
0.4 0.44 12.11 21.9
0.5 0.50 12.13 29.3
0.6 0.60 12.22 34.5
0.7 0.64 12.18 34.8

Figure 3(a) shows the electrical resistance in ab-plane un-
der zero field as a function of temperature. We normalize them
by the resistance at 300 K for comparison, all of them show a
smooth evolution in the normal state and a sharp supercon-
ducting transition at Tc. To search for the signature of any
magnetic transitions, we plot the first-order derivative of the
resistance versus temperature in the inset of Fig. 3(a). Only
a narrow peak corresponding to the superconducting transi-
tion can be identified, the value of Tc for each doping is listed
in Table 1, too. Therefore, for all samples with actual do-
ing x = 0.40–0.64, they are paramagnetic in the normal state,
which is consistent with the previous reports on polycrys-
talline samples.[82,87] We also notice that the residual resis-
tance just above Tc is less than 10 % of the room temperature
resistance, giving a large residual resistivity ratio RRR≈ 10.
Such large RRR also confirms the high quality of our crys-
tals. For references, RRR is about 5 for optimally hole-doped
Ba1−xKxFe2As2,[33] and about 2 for optimally electron-doped
Ba(Fe1−xNix)2As2.[34] For high pure KFe2As2 grown by KAs
flux, RRR can be over than 2000.[96,97] The superconducting
volume of these Ca1−xNaxFe2As2 crystals was measured by
magnetization under a magnetic field of 3 Oe along c-axis
in ZFC mode. We only checked three typical samples with
x = 0.40, 0.44, and 0.64 as shown in Fig. 3(b). All of them
show sharp superconducting transitions with a strong diamag-
netic signal and a narrow width ∆T < 2 K. The magnetic sus-
ceptibility 4πχ = −1 at low temperatures indicate the full
Meissner state, namely bulk superconductivity in these sam-
ples. In the parent compound CaFe2As2, a magnetic transition
with stripe-type order can be probed at about TN = 170 K by
the magnetization under high field, which shows a deletion be-
low TN and a linear temperature dependence above TN.[14,58]
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However, the normal state resistance is more sensitive to the
magnetic/structural transitions in FeSCs,[33–36] thus we do not
have to measure the magnetization up to high temperatures to
further search the magnetic order.
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Fig. 3. (a) The temperature dependence of resistance for
Ca1−xNaxFe2As2 crystals. All data are normalized by the room tem-
perature resistance. The inset shows the first-order derivative of the re-
sistance. (b) Magnetization measured under ZFC mode for three typical
dopings x = 0.40, 0.44, 0.64.

Finally, we compare the doping dependence of the c-axis
parameter and superconducting transition Tc with the previous
reports on Ca1−xNaxFe2As2.[75–77,87,89] As shown in Fig. 4,
our results can merge well with previous reports for both pa-
rameters. In Fig. 4(a), we also plot the doping dependence
of the c-axis parameter in Ba1−xKxFe2As2.[33,95] As we can
see, for both hole doped systems, the c-axis lattice is con-
tinuously stretched by chemical substitutions, as the radius
of alkali metal is larger than alkali earth metal.[98,99] The c-
axis has a linear relationship with doping level x in the un-
derdoped regime: c = 0.78x+ 11.7 for Ca1−xNaxFe2As2 and
c = 0.88x + 12.98 for Ba1−xKxFe2As2,[95,98,99] with similar
slopes. With those Tc of Ca1−xNaxFe2As2 summarized in
Fig. 4(b),[75–77,87,89] we can roughly fit by a parabolic func-
tion: Tc = −155.2x2 + 227.18x − 48.89. Such a relation
probably suggests that the superconducting behavior in the
underdoped region is also strongly related to the d-spacing
between Fe-As layers. Particularly, for those systems with
smaller c-axis parameters thus closer distance of the adjacent
Fe-As layers, the inter Fe-As layer coupling is stronger, thus
to reach the optimal superconductivity upon doping requires

higher concentration. This naturally explains the increasing
doping to the optimal level in (Ba,Sr,Ca)1−xNaxFe2As2 sys-
tems, where their parent compounds (Ba,Sr,Ca)Fe2As2 have
decreasing c-axis: c = 13.04, 12.37, 11.75 Å at room temper-
ature, respectively.[84–89] For the overdoped region, although
the c-axis continuously increasing upon doping, strong mis-
matches of the Fermi surface sizes are expected to suppress the
superconducting pairing.[5] It was proposed in Ref. [100] that
Tc is higher when the pnictogen height and As–Fe–As bond
angle more close to form a regular tetrahedron among many
systems of FeSCs. This could be a consequence from compet-
ing interactions strongly associated with the local crystalline
structure.
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Fig. 4. (a) Doping dependence of the c-axis parameters in the
Ca1−xNaxFe2As2 system[75–77,87,89] in comparison with the Ba1−xKxFe2As2
system.[33,95,98,99] Here the relative errors for the chemical compositions
of our sample are about 5% from the ICP measurements, errors for other
samples are obtained from the above-mentioned literature, and the solid
lines are linear fittings. (b) Summary of the doping dependence of Tc in
Ca1−xNaxFe2As2.[75–77,87,89] The solid line is a parabolic fitting to all data.

4. Summary
In summary, we have successfully grown a series of large

Ca1−xNaxFe2As2 single crystals with actual Na doping x =

0.4–0.64 using the NaAs-flux method. These crystals show
bulk superconductivity but no magnetic transitions. The posi-
tive doping dependences both for Tc and c-axis lattice parame-
ter suggest that they are probably related. These homogeneous
and sizable crystals provide us chances to further investigate
the unconventional superconductivity in FeSCs, especially for
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those techniques requiring large crystals, such as inelastic neu-
tron scattering and µSR.
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