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A B S T R A C T   

Troilite is one type of FeS polymorph formed under reducing environmental conditions. However, its phase 
transition by laser heating during Raman analysis has not been investigated in detail. This study focuses on 
identifying changes to Raman spectra of troilite resulted by laser heating during Raman analysis so as to 
determine optimized analytical conditions for characterizing iron sulfides. We comfirm that iron sulfides exposed 
in air are easily transformed to magnetite and hematite after a high-power laser (> 200 mW/μm2 for pyrite and 
> 14 mW/μm2 for troilite) irradiation. Troilite crystal structure is also broken easily by laser (>12 mW/μm2) 
under the vacuum conditions due to the volatilization of S and Fe, possibly inducing the formation of nanophase 
metallic iron. Therefore, iron sulfides are expected to be sensitive to laser heating. Here, we have confirmed the 
laser heating effect through a set of heating experiments from ambient temperature to 500 ◦C with various laser 
powers. Our results suggest that Raman analysis for troilite should be performed with a low laser power of <1.50 
mW (12 mW/μm2) both in air and vacuum environments. The heating effects on troilite phase transition can be 
responsible for the formation of magnetite, hematite, and nanophase metallic iron in lunar samples. The ther-
mally induced phase transition of troilite observed in this study is important because it undoubtedly modifies 
both the redox state and magnetic property of extraterrestrial samples and would trigger a misleading inter-
pretation of planetary evolution.   

1. Introduction 

Troilite, a pseudomorph of FeS commonly found on the Moon, 
Martian surfaces, extraterrestrial meteorites and Earth (Carpenter and 
Desborough, 1964; Evans, 1970; Jacob et al., 2004; Moreau et al., 2022; 
Münker et al., 2017; Skinner et al., 2004; Thomas et al., 2003), plays a 
crucial role in early solar system chronology (Tachibana and Huss, 
2003), shock-induced metamorphism (Bennett III and McSween, 1996; 
Harries and Langenhorst, 2013; Scott, 1982), geothermometers (Skinner 
and Luce, 1971), the origin of life (Matamoros-Veloza et al., 2018; 
Onufrienok et al., 2020), and designing new-type of catalysts (Schaible 
et al., 2019; Zhou et al., 2019). 

Raman spectroscopy was usually employed to identify mineral 

polymorphs for both terrestrial and extraterrestrial samples (Minitti 
et al., 2005; Neuville et al., 2014; Wang et al., 2015). However, most 
metallic minerals are insensitive to Raman spectroscopy because of their 
poor light scattering characteristics (de Faria et al., 1997; Sharma et al., 
2009). Therefore, high laser power is usually used to identify iron sulfide 
minerals (Mernagh and Trudu, 1993; Wang et al., 1999). Laser power 
could induce an increase the local temperature on the sample surface 
(Sahoo et al., 2013), making sulfides oxidized easily at high tempera-
tures (Genchev and Erbe, 2016; Onufrienok et al., 2020; Weber et al., 
2017). To date, only a few Raman spectroscopy studies on troilite have 
been conducted due to the vulnerability of Fe–S bond (Avril et al., 
2013; Matamoros-Veloza et al., 2018; Weber et al., 2017). For example, 
Weber et al. (2017) found that Raman measurements on troilite in 
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vacuum are only feasible with a laser power of ~7 mW, corresponding to 
an energy density of 5.3 mW/μm2. However, the alteration of chemical 
compositions and phase transitions caused by laser heating during 
Raman analysis has not been particularly investigated. 

The content of Fe3+ in troilite is zero or, at least, extremely low (El 
Goresy, 2018; Brounce et al., 2019), pointing to a strongly reducing 
environment (Cameron, 1970). However, previous studies indicate that 
troilite is easily transformed to other phases with changing redox state. 
Either weathering or sample preparation of troilite may lead to the 
oxidation of Fe2+ to Fe3+ (Shearer et al., 2014; Taylor and Burton, 1976; 
Taylor et al., 1974). For example, some Fe-bearing minerals in extra-
terrestrial samples may be altered by the ambient environment on Earth 
(Chen et al., 2002; Prieto-delaVega et al., 2022; Wesełucha-Birczyńska 
and Żmudzka, 2008). In vacuum environment, both meteorite impaction 
and solar wind can alter the redox states of iron and sulfur in troilite 
(Tachibana and Huss, 2005; Gu et al., 2022). Troilite is commonly 
associated with metallic Fe0 (or Fe–Ni metal) in impact breccias and 
exhibits a shearing boundary between them (Begemann and Wlotzka, 
1969; Boctor et al., 1982; Chen et al., 2002), suggesting a genetic chain 
between troilite and metallic Fe0 during shock metamorphism. In 
addition, several studies suggest that stoichiometric FeS as a metastable 
intermediate phase would decompose upon space weathering or heating 
(Brounce et al., 2019; Fei et al., 1997). Therefore, change in heating or 
weathering environments would induce troilite phase transition and 
thus adjust the valence state of iron. The Moon's paleomagnetic field, an 
essential restrictive condition of the lunar evolution, can be detected in 
lunar samples via thermoremanent magnetization experiments at tem-
peratures above 700 ◦C (Tarduno et al., 2021). However, how temper-
ature affects the magnetic property of troilite during these heating 
experiments is still unknown. The sample preparation and experimental 
procedure should be kept out of oxygen to avoid surface oxidation, 
which may lead to misleading magnetic results. 

Here, we focus on the mechanism of laser irradiation-induced phase 
transformations of troilite. We found that troilite is sensitive to laser heat 
in both vacuum and ambient air conditions. Heating experiments further 
test the stability of iron sulfide under various temperatures. Our results 
would provide new insights into the origins of lunar iron oxides and 
nano metallic iron, both of which would affect the magnetic properties 
of lunar samples. 

2. Experimental 

2.1. Samples 

Troilite is found in a Dar el Kahal H5–6 ordinary meteorite sample, 
which mainly consists pyroxene, olivine, plagioclase, apatite, troilite 
and Fe–Ni metal. The meteorite sample was embedded in an epoxy 
mount and polished with diamond paste. The visual characteristics of 
the meteorite sample grains are shown in Fig. 1. The SEM pictures reveal 
that the anhedral troilite occurs in veins and droplets inside the pyrox-
ene and olivine. The troilite granules are usually directly connected to 
the Fe–Ni metal, which indicates possible formation through shock- 
induced metamorphism with a shock stage of S4-S5 (Miyahara et al., 
2020; Stöffler et al., 1991). In order to simulate the oxidation reaction of 
Fe, destructive in situ heating experiments were carried out using pyrite, 
hematite, and magnetite, which were collected from Guangdong prov-
ince, Guangxi province, and Inner Mongolia autonomous region, China, 
respectively. The pyrite shows light copper yellow color, opaque, and 
1.0 cm euhedral cube crystal morphology. The hematite was formed in a 
sedimentary environment with a kidney shaped morphology and dark 
red color. The magnetite shows an iron black color and magnetic char-
acteristics. The Fe-bearing samples were polished along one random 
plane with 9 μm, 3 μm, and 1 μm diamond slurry, respectively prior to 
observation. 

2.2. Instrumentation and operating conditions 

2.2.1. Micro-Raman spectroscopy 
Micro-Raman spectroscopy was performed by a Witec alpha300R 

confocal Raman microscope and a Raman Imaging and Scanning Elec-
tron Microscopy system (RISE system consists of a Zeiss Gemini 450 SEM 
and a Witec alpha300R Raman) at the Institute of Geology and 
Geophysics, Chinese Academy of Sciences(IGGCAS). 

The Raman measurements were carried out under both ambient and 
2.99 × 10− 6 mbar vacuum conditions (RISE system). The sample can be 
transferred between the SEM and Raman measuring positions within the 
vacuum chamber of the Gemini 450 SEM. SEM image was acquired 
using the BSE detector of the RISE system and light microscopy modes 
were applied when conducting the Raman test. Samples for Raman 
measurement were not coated with carbon. 

The spectra were excited with 532 nm radiation from a semi-
conductor laser with a ~ 0.02 nm spectra width (FWHM). A 600 
grooves/mm grating with a spectral resolution of 3 cm− 1 was used. The 
laser beam was focused on the sample surface by a 100× Zeiss micro-
scope (NA = 0.9 in air and 0.7 in a vacuum, with a spot size of ca. 360 
nm and 460 nm). We have made an estimation of 8 mW/μm2 irradation 
energy on the sample by 1 mW laser (Fig. 2). The Raman shift regions of 
80– 1600 cm− 1 were used for this study, and the data has been calibrated 
with a silicon peak of 520.7 cm− 1. A spectral acquisition time of 5– 40 s 
and total spectra with 20– 50 accumulations were collected for each 
measurement. The spectra were not baseline corrected. 

2.2.2. Scanning Electron Microscope (SEM) and energy-dispersive X-ray 
spectroscopy (EDS) 

SEM and EDS analyses were performed at IGGCAS. A high-resolution 
field emission scanning electron microscope (Zeiss Gemini 450) oper-
ating at 15 kV and beam current of 2 nA was used to perform visuali-
zation and imaging of the microstructure of samples. To eliminate 
charging and improve the contrast for low-density materials, a carbon 
coating of about 8 nm was performed at the coater system (Leica EM 
ACE600) to facilitate high-resolution FESEM imaging. To reveal the 
elemental distribution of samples, EDS data were collected with Oxford 
Ultim Max 60 mm2 EDS detectors attached to SEM at 15 kV. 

2.2.3. Focused ion beam–scanning electron microscope (FIB–SEM) and 
Transmission Electron Microscope (TEM) 

The electron-transparent foil with typical dimensions of 4.5 × 6.0 ×
0.1 μm (Fig. 3–a) was prepared using a Zeiss Auriga Compact FIB-SEM at 
IGGCAS. Ion beam conditions for the final thinning and polishing were 
5–30 kV high voltage with beam currents of 50 pA–2 nA. The TEM foil 

Fig. 1. Back-scattered electron (BSE) image of the meteorite. Tro = troilite, Pl 
= plagioclase, Px = pyroxene, Ol = olivine, Ap = apatite, Fe-Ni = Fe-Ni metal. 
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Fig. 2. (a) Schematic drawing of the laser path; Back-scattered electron (BSE) images of (b) troilite, (c) pyrite, (d) hematite, (e) magnetite (Red arrows show the laser 
points). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Analysis of FIB foil taken from the laser point generated in vacuum. (a) BF-TEM image of the slice made by FIB-SEM; (b) HRTEM of the laser spot and a SAED 
pattern of the B area view along [1–10]; (c) and (d) SAED pattern of A area viewed along the [010] and [1–10] direction. 
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was then attached to a copper grid by the Omniprobe AutoProbe200 
micromanipulator. The copper grid with prepared foil was fixed on a 
TEM holder for TEM observation and analysis. The TEM bright-field 
imaging, selected area electron diffraction (SAED) and high-resolution 
transmission electron microscopy (HRTEM) imaging were performed 
using a JEOL JEM-2100 TEM at IGGCAS, with the electron beam 
generated from a LaB6 gun and operating voltage of 200 kV. The BF- 
TEM images show that the laser spot (Fig. 3–b) has a diameter of 
0.56 μm and a depth of 1.3 μm. Fig. 3–c and d show the SAED pattern of 
the selected area A viewed along the [010] and [1− 10] directions, 
respectively. 

2.2.4. Heating experiments 
The effect of temperature on the Raman spectrum of the samples was 

investigated using a Linkam TS 1400XY heating stage (Linkam Scientific 
Instruments) at IGGCAS. The samples with a thickness of ~0.5 mm were 
put in a tubular platinum furnace covered by ceramic. In situ heating 
experiments were conducted from 25 ◦C to 500 ◦C in air with a 100 ◦C 
interval. The heating procedure was regulated manually by Linksys32 
softeware controller with a 60 ◦C/min heating rates. The temperature 
accuracy and stability are ±1 ◦C. Air is circulated at a flow rate of ~6 
ml/min through the furnace during the test. The sample wafer was 
placed on a sapphire disc within the temperature stage. The upper 
window of the temperature stage is made of zinc selenide and the lower 
window is of quartz. Every test was conducted after 5 min of tempera-
ture retention. 

3. Results 

3.1. Thermally induced oxidation of troilite in air 

We have identified the typical troilite crystal structure by TEM-SAED 
(Fig. 3–b,–c,–d). Troilite has a NiAs-type crystal structure with a hex-
agonal unit cell. In the crystal structure of troilite, Fe atom located in the 
octahedral pores, is surrounded by six S atoms with a distance of 0.2359 
nm to 0.2721 nm (Evans, 1970), producing different vibration modes. 
Fig. 4 shows the Raman spectra of troilite in air at different laser powers. 
Raman spectroscopic analysis revealed that the typical troilite Raman 
shifts at around 148 cm− 1, 197 cm− 1, 228 cm− 1, 255 cm− 1, and 308– 
331 cm− 1, which are due to the S–S and Fe–S vibrations. It was re-
ported that pyrrhotite (Fe1-xS) exhibits peaks according to the stoi-
chiometric composition and most of the Fe–S bands are in the region of 

200– 400 cm− 1 (Wopenka, 2012). The dominant Raman bands of S are 
reported as 153 cm− 1 and 187 cm− 1 (White, 2009). As shown in Fig. 4, 
the high laser +power led to a clear change of the spectrum of the 
troilite. The 148 cm− 1 and 197 cm− 1 peaks, which can be assigned to 
S–S vibrations, show a blue shift with increasing temperature but dis-
appeared when laser power went up to 1.75 mW (Fig. 4). The new 
Raman peaks formed in 220– 240 cm− 1 (stage I) occurred at 1.50 mW, 
which should not be assigned to the Fe or S vibrations of oxidation phase 
because similar peaks also formed under vacuum conditions. A 240 
cm− 1 Raman peak was once observed on synthetic troilite and meteorite 
troilite at − 263 ◦C (Avril et al., 2013). The band in the 220– 240 cm− 1 

region observed previously (Weber et al., 2017) is due to Fe–S band 
bending accordingly (Stage I in Fig. 4). The Raman spectrum of troilite 
corresponds to the peaks of magnetite (Stage II in Fig. 4), showing that a 
transition of FeS into Fe3O4 with the main peak occurring around 666 
cm− 1 and additional low-intensity peaks around 540 cm− 1 at 2.00 mW 
during laser enhancement process. The Fe was oxidized under the high 
temperature induced by the laser. The magnetite phase was transformed 
into hematite (Stage III in Fig. 4) at 4.25 mW or higher power. 

As determined by EDS (Fig. 5), the predominant elements in the 
troilite samples were Fe and S. The S–S and Fe–S bonds of the troilite 
were likely to be broken when they were irradiated. The elemental data 
of the laser spot indicated that the troilite was oxidized after laser 
irradiation, and the S was volatilized in the form of SO2. As a conse-
quence, the Fe2+ was in-situ fixed in the form of magnetite and hematite 
if O element existed (Fig. 6). The possible reaction sequence is listed as 
follows: 

FeS+O2→Fe3O4 + SO2 (Stage II) (1)  

FeO+O2→Fe2O3 +SO2 (Stage III) (2)  

3.2. Thermally induced oxidation of Fe-bearing minerals in air 

In order to figure out the thermal-induced oxidation behavior of Fe2+

during the Raman measurement, different laser powers were used to 
simulate the phase transition reaction. Moreover, a rough correlation 
between laser power and the associated temperature during the mea-
surement was established based on in situ heating experiments of the 
selected Fe-bearing minerals. 

Pyrite, hematite, and magnetite are mainly composed of Fe, S, and O 
elements with the stoichiometric formula of FeS2, Fe2O3, and Fe3O4, 
respectively. The main Raman peaks are localized at 351 cm− 1, 384 
cm− 1, and 441 cm− 1 for the pyrite (Fig. 7–a), at 227, 295, 411, and 1317 
cm− 1 for the hematite (Fig. 7–b) and at 311, 570, and 672 cm− 1 for the 
magnetite (Fig. 7–c). The spectral data obtained in this study correspond 
well with the data reported previously in the literature (de Faria and 
Lopes, 2007; Marshall and Marshall, 2011; Udayabhaskar et al., 2012). 

The Raman peaks of pyrite and magnetite shift to lower wave-
numbers as laser power increase, indicating that the vibration energy 
was weakened by the thermal expansion effect (Fig. 7). However, the 
hematite resisted the thermal influence by its stronger molecular 
structure (Fig. 7–b). Locations of Raman peaks of hematite stayed con-
stant during the experiment. Raman spectra of an in situ heated sample 
indicate that the 209–219 cm− 1 and 270–289 cm− 1 peaks (Fig. 7–b) 
come from the vibration of hematite from a high-temperature environ-
ment (Fig. 8–b). The Raman peaks of pyrite may shift 5– 9 cm− 1 

depending on the testing temperature and atmospheric conditions 
(Bryant et al., 2018; Weber et al., 2017). It was previously reported that 
heat-induced transformations from Raman spectroscopy significantly 
changed the spectrum of iron sulfide (Genchev and Erbe, 2016). In our 
experiments, Raman peaks of the pyrite shifted to 348 cm− 1, 379 cm− 1, 
and 435 cm− 1 when a 20.0 mW laser was applied. Phase transition 
occurred at 25.00 mW with two new peaks at 220 cm− 1 and 284 cm− 1, 
which indicate that the iron was oxidized (Fig. 7–a). Repeated Raman 
testing in this research has also proved that the newly formed phase is 

Fig. 4. The Raman spectra of troilite with different laser powers in air (the 
numbers show the laser energy with an interval of 0.25 between 0.25 mW and 
5.00 mW). 
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the same as hematite (Fig. 8–a). The two new Raman peaks at 216 cm− 1 

and 278 cm− 1 of magnetite (Fig. 7–c) suggest the formation of hematite, 
which is consistent with the hematite reference data in the RRUFF 
database (Wang et al., 2004). This reaction sequence of the thermal 
transformations is considered analogous with the mechanism proposed 
by Mitchell (2002) and Weber et al. (2017): 

FeS2 +O2→Fe2O3 + SO2 (3)  

Fe3O4 +O2→Fe2O3 (4) 

The temperature of the laser spot can be several hundreds of degrees, 
even when several tens of mW power was used (Shebanova and Lazor, 
2003). Raman peaks of pyrite were unchanged until 25.0 mW, while the 
oxidation peaks of magnetite started at ~5.0 mW (Fig. 7). Compared 
with pyrite and hematite, magnetite is more likely to suffer from irra-
diation alterations. Similar Raman frequency shifts were also observed 
in the studies on nanosized hematite (Owens and Orosz, 2006), 
magnetite (Moldenhauer et al., 2018), and Martian meteorite (Wang 
et al., 2004). 

In situ heating experiments were further used to verify the irradia-
tion effect. The sample was heated from 26 ◦C to 500 ◦C at regular 
temperature intervals. The observed spectrum at 400 ◦C is similar to that 
of the laser-irradiated samples, indicating that the transformation came 

from the thermal effect of the laser. The transition temperature of pyrite 
and magnetite is about 400 ◦C (Fig. 8). As expected, the spectral changes 
are irreversible, as shown in Fig. 9. Therefore, we concluded that the 
temperature controls the occurrence and progress of the oxidation re-
action. The correct use of laser power is a prerequisite for reliable 
Raman spectra of Fe-bearing mineral systems. 

3.3. Thermally induced phase transformation of troilite in vacuum 

For the purpose of eliminating the interference of oxygen element, 
the Raman test of troilite in a vacuum environment was carried out 
(Fig. 10). Thermal phase transition induced by irradiation cannot occur 
in a vacuum due to lack of oxygen. The Raman spectrum comprises of an 
intense band at 200–260 cm− 1 (Stage I in Fig. 10) and it is assigned to 
the characteristic features of Fe–S stretching, which decreased slightly 
with the increasing of laser power. Raman spectrum in the Fe–S region 
comprises an intense band at ~220 cm− 1. This indicates the crystalli-
zation breakage of troilite induced by laser irradiation at ca. 4.25 mW, 
resulting in the loss of some mineral component, most probably the loss 
of S due to its volatility. This phenomenon can be observed by elemental 
analysis with EDS (Figs. 3 and 11). The 220 cm− 1 band disappeared at 
the laser spot when 5.0 mW laser power was applied (Fig. 10). A hollow 
hole at the laser spot that appeared in the vacuum measurement sample 

Fig. 5. (a) SEM image of the irradiated spot of troilite by 35 mW laser in air; (b), (c), (d): Fe, S, O elemental EDS mapping images of the irradiated spot, respectively.  

Fig. 6. Analysis of FIB foil taken from the laser point generated in air. (a) BF-TEM image of the slice made by FIB-SEM; (b) EDS of the laser spot area marked “A”.  

X. Li et al.                                                                                                                                                                                                                                        



Icarus 390 (2023) 115299

6

can be observed from the SEM (Fig. 11) and TEM image of the FIB-cut 
slice (Fig. 3–a, − b). EDS signal of Fe should also be absent because the 
laser spot is empty. The reason for this may be assigned to the signal 
responding difference between Fe and S. Further study should be carried 
out on the elemental-related signal counting difference in the EDS 
measurement. 

4. Discussion 

4.1. The temperature effect on troilite structure 

Our study presents new insights into the stability of troilite in various 
thermal environments. The critical point of phase transition of troilite 
starts at 1.50– 1.75 mW (12– 14 mW/μm2), while it is 25.00 mW for 
pyrite and 5.00 mW for magnetite. This discrepancy reflects that troilite 
is more sensitive to laser heat than pyrite and magnetite. Different from 
troilite, the Fe2+ of pyrite is coordinated to six S in a distorted octahedral 
arrangement. Each S is coordinated to one S and three Fe2+ in a distorted 
tetrahedral arrangement, forming a 0.226 nm length of Fe–S bond 

(Fleet, 1970; Nickel, 1968; Qian et al., 2010). Considering the bonding 
strength factor, much more energy is needed to broke the Fe–S bond of 
pyrite than troilite although they are both composed of Fe and S. Be-
sides, the Crystal Orbital Hamilton Population of the Fe–S bonds and 
the Fe bond valence of troilite were smaller than that of pyrite, resulting 
in weaker bonding stability (Liu et al., 2019; Terranova et al., 2018). 

The transition should not only depend on laser power but also on the 
instrument's setting and sample character (Foucher, 2022; Prince et al., 
2020). Compared to bulk minerals with a flat plane, smaller samples 
with a coarse surface and dark color are easier to absorb laser energy 
(Bryant et al., 2018; Hanesch, 2009). The thermal effect will become 
severe because of the poor heat conduction of the small particles. The 
iron black color accounts for the high laser energy absorption efficiency 
of the magnetite than pyrite. 

Fig. 7. The Raman spectra of three types of Fe-bearing minerals with different 
laser powers (a) pyrite; (b) hematite; (c) magnetite. (the numbers show the laser 
energy in a unit of mW). 

Fig. 8. In situ Raman spectra of three types of Fe-bearing minerals with 
different temperatures (Laser power: 2.0 mW) (a) pyrite; (b) hematite; 
(c) magnetite. 

Fig. 9. The Raman spectra of (a) pyrite, (b) hematite, (c) magnetite after 35.00 
mW laser irradiation; (d) pyrite, (e) hematite, (f) magnetite after 500 ◦C 
heating. (All the data in Fig. 9 were acquired with a 2 mW laser power at 
ambient temperature). 

Fig. 10. The Raman spectra of troilite exposed to different laser powers in 
vacuum. (the numbers show the laser energy with an interval of 0.25 between 
0.25 mW and 4.25 mW). 
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Although we cannot obtain the temperature of troilite transition 
directly, the heating experiments could provide equivalent information. 
Our experiments show that the thermally induced oxidation of pyrite 
and magnetite occurred around 400 ◦C (Fig. 8). The Raman analyses 
show that the corresponding transition from magnetite to hematite 
happened approximately at 4 mW (Figs. 4 and 7). In this regard, the 
phase transition of troilite caused by the 1.50 mW laser energy (Figs. 4 
and 10) would most likely correspond to temperatures far below 400 ◦C, 
as laser heating is positively related to its energy. 

Therefore, special technical procedures should be applied when in 
situ Raman measurement of troilite was carried out on planetary surface 
exploration (Wang et al., 2004). We suggest that the Raman analysis of 
troilite should be conducted with the laser power lower than 1.5 mW. 
Otherwise, phase transition during Raman analyses would occur and 
thus generate misleading results. 

4.2. On the origin of lunar magnetite and hematite 

The lunar surface and interior are generally thought to be highly 
reduced with oxygen fugacity ranging from +0.2 to − 2.5 log units 
relative to the Fe-wüstite (IW) buffer (Wadhwa, 2008). However, this 
point was challenged by the detection of magnetite and hematite in 
lunar rocks and soils (Bell et al., 1974; Dąbrowski et al., 2008; Forester, 
1973; Griscom and Marquardt, 1972; Joy et al., 2015; Kolopus et al., 
1971; Pasieczna-Patkowska et al., 2008; Runcorn et al., 1971; Shearer 
et al., 2014; Weeks, 1972; Weeks et al., 1972; Weeks et al., 1970). These 
findings were used to propose that localized, variable oxidation states 
might occur in lunar history. However, the observation of hematite by 
Raman measurements is likely caused by the oxidation of lunar ilmenite 
or nanophase iron Fe0 when heated in air with a laser power higher than 
3 mW (Ling et al., 2011; Shearer et al., 2014). Our study further in-
dicates that troilite is more sensitive to laser heat than ilmenite, a >1.5 
mW laser power is sufficient to induce the transition from troilite to 
magnetite and then hematite. Therefore, the Raman detection of 
magnetite and hematite in lunar samples, especially close to the troilite 
domains, should be re-evaluated and interpreted with caution. 

The presence of magnetite was well identified in Apollo 16 regolith 

breccia 60016 using multiple analytical techniques (Joy et al., 2015). 
The magnetite and troilite show a clear intergrowth texture and occur as 
interstitial phases surrounding the fragments of plagioclase, which was 
interpreted to result from impact thermal oxidation of troilite in the 
presence of H2O or CO2 (Joy et al., 2015). Our experiment shows that 
troilite could be also oxidized to magnetite with an addition of oxygen at 
low temperatures (<400 ◦C). This could be a complementary mecha-
nism to generate magnetite in lunar regolith. It is worth noting that the 
lunar regolith can hold water, CO2, oxygen and other volatile resources 
acquired from solar winds (Fagents et al., 2010; von Steiger et al., 2010) 
or Earth's atmosphere (Terada et al., 2017) over some 4 billion years 
(Barboni et al., 2017). In this regard, Fe-oxides may be present widely on 
the Moon in locations where captured oxygen or water with the presence 
of heating via impact or magma underplating, although this hypothesis 
should be further investigated. 

4.3. One possible origin of nanophase metallic iron 

Nanophase metallic iron (Fe0) is a common mineral in lunar regolith, 
highland breccias, and meteorites (Tsay et al., 1973; Noble and Pieters, 
2002; Papike et al., 1998; Wang et al., 2012; Wu et al., 2017). The 
metallic iron in lunar samples could be produced by magma crystalli-
zation (Hewins and Goldstein, 1974), subsolidus reduction of Fe–Ti 
spinel, ilmenite, and fayalite (El Goresy and Ramdohr, 1975; Noguchi 
et al., 2011; Ramdohr and Goresey, 1970), space weathering (Pieters 
et al., 2000), or impact-induced decomposition of pyroxene (Guo et al., 
2020) and fayalite (Guo et al., 2022). 

This study presents an additional potential mechanism for metallic 
iron formation. Our results show that troilite is easily oxidized when 
irradiated in air, reflecting the fragility of its crystal structure. A 1.50 
mW laser power is enough for the distortion of the troilite structure in 
both air and vacuum. With increasing laser energy, the typical Raman 
peaks of the S–S vibrations (148 cm− 1 and 196 cm− 1) in troilite 
disappear (Fig. 10), directly pointing to the loss of S. The metastable 
intermediate phase occurring at stage I in Fig. 10 would further 
decompose with increasing laser energy, as the Raman peaks in the 
Fe–S region gradually become weak and simple. As sulfur is one of the 

Fig. 11. (a) SEM image of the irradiated spot of troilite by 35 mW laser in vacuum; (b), (c), (d): Fe, S, O elemental EDS mapping images of the irradiated spot, 
respectively. 
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volatile elements being more mobile than iron (Tachibana and Huss, 
2005; Matsumoto et al., 2021), it would most likely have steamed away 
during laser irradiation. High-temperature conditions induced by laser 
irradiation would put the Fe–S bond in an excited state. Without oxy-
gen, Fe2+ in troilite can only tend to be reduced to Fe0 after the vola-
tilization of sulfur. Therefore, we propose that the following reaction 
series (Harries and Langenhorst, 2013) may occur in vacuum 
environment: 

FeS = xFe0 + 1 − x (FeS)+ xS↑ (5) 

However, no nanophase metallic Fe0 was detected around the laser 
spot (Fig. 3–b), probably due to the small amount or small particle size of 
the newly formed Fe0. The formed nano Fe0 may be packaged by the S 
steam and deposit in different places of sample surface, or extracted in 
vacuum. This mechanism can interpret that metallic Fe0 (or Fe–Ni 
alloy) is always associated with troilite (Fig. 1) (Berger et al., 2011; Buz 
et al., 2015). Furthermore, troilite had been found in some shock-melt 
veins (Bennett III and McSween, 1996; Chen et al., 2002), with partial 
migration of S (Tomkins, 2009), also implying that impact thermal 
desulphurization of troilite indeed occurred. 

In the most recent study of the Chang'E-5 lunar samples, elongated 
nanophase metallic Fe0 particles were observed for the first time 
throughout the interior of the troilite grain (Gu et al., 2022). Since solar 
wind irradiation and UV radiation usually damage the top surface of the 
grain, the temperature may alter the whole grain at a certain depth. 
Therefore, one possible reason for the formation of the nanophase 
metallic Fe0 particles and the vesicle of the troilite can be attributed to 
thermal issues. In summary, our experiments indicate that troilite could 
be the source of metallic Fe0 via a high temperature-induced S volatil-
ization process, such as impact heating (Guo et al., 2020), magma 
underplating (Glotch et al., 2010), and ion irradiation (Laczniak et al., 
2021). 

4.4. Implications for evaluating a long-lived dynamo of the Moon 

Whether the Moon has a long-lived magnetosphere is a highly 
debated issue. Many paleomagnetic measurements of Apollo samples 
support that the Moon once had a core dynamo generating surface field 
intensities comparable to that of Earth today (Cournède et al., 2012; 
Garrick-Bethell et al., 2009; Garrick-Bethell et al., 2017; Maurice et al., 
2020; Rochette et al., 2010; Weiss and Tikoo, 2014). The lifetime of the 
dynamo was proposed to be lasting from at least 4.2 to <2.0 Ga ago 
(Mighani et al., 2020). However, a recent measurement shows that 
magnetic signals of lunar samples may come from the transient field 
generated by impacts and thus argues against the presence of a long- 
lived core dynamo (Tarduno et al., 2021). Recovering reliable paleo-
intensities from primary magnetic records of lunar samples is thus 
critical to evaluating the presence or absence of long-lived dynamo of 
the Moon. 

One of the most broadly accepted paleointensity techniques is 
comparing the thermal remanent magnetization acquired in the labo-
ratory to the original natural remanent magnetization of the sample, 
which needs to heat the sample to high temperatures, e.g., magnetic 
measurements using thermal paleointensity techniques commonly 
heated lunar samples up to 700 ◦C (Tarduno et al., 2021; Tikoo et al., 
2017). Thermal alteration during heating may change the sample's 
magnetic carrying capacity, thus hindering the acquirement of reliable 
paleointensity results (Fau et al., 2019). Troilite is an antiferromagnetic 
mineral at room temperature and thus cannot record the remanence of 
magnetic field. However, our study shows that it can either reduce to 
iron or oxidize to magnetite and/or hematite, which are ferro/ferri- 
magnetic minerals with strong magnetic carrying capacity, thus modi-
fying the sample's magnetic properties. Therefore, the thermally 
induced phase transition of troilite observed in this study provides 
intuitive evidence for potential magnetic alteration during heating, 

reminding us that proper control of the oxidation-reduction environ-
ment during thermal paleointensity measurements is essential for 
achieving reliable paleointensity of samples recovered from the Moon 
and other planetary bodies. In addition, impact, magma underplating, 
and alteration during analysis would also have the potential to change 
lunar samples' magnetic properties. Any model for the presence or 
absence of long-lived dynamo of the Moon needs to consider the thermal 
effects on the phase transition of troilite. 

5. Conclusions 

High laser power has slightly decreased the frequencies of the Raman 
peaks of pyrite and magnetite but not for hematite. Also, pyrite and 
magnetite may be oxidized to hematite under laser irradiation, resulting 
in erroneous interpretations of the minerals phase. 

Raman spectra with high quality of the troilite obtained from the one 
heated in air and the one heated in vacuum exhibited peaks at 148 cm− 1, 
196– 197 cm− 1, 226– 228 cm− 1, 255 cm− 1, and broad peaks at 300– 335 
cm− 1. Special attention should be paid to the Raman measurement and 
the preservation of Fe-bearing minerals, especially troilite. Appropriate 
laser energy and atmospheric environment should be provided. For 532 
nm laser, irradiation on the sample of 8 mW/μm2 is the appropriate laser 
power value for Raman spectroscopy of troilite. It can be transformed 
into magnetite and hematite if the laser power is beyond 12 mW/μm2. 

All these observations suggest that troilite may serve as the precursor 
for the nanophase metallic Fe0 and magnetite of the Moon. Heating 
generated by impact or magma underplating would change lunar troilite 
to magnetic minerals (Fe0 or magnetite) and thus potentially record core 
dynamo-like fields. Therefore, evaluating a long-lived lunar paleo-
magnetosphere should preclude the influence of thermally induced 
phase transition of troilite. 
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