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ABSTRACT

We present magnetization studies as a function of time, temperature, and magnetic field for H k c-axis, in a hole-doped pnictide supercon-
ductor, La0:34Na0:66Fe2As2, with Tc � 27K. The obtained vortex phase-diagram shows that the magnetic irreversibility line is very close to
the mean-field superconducting transition line, similar to the low Tc superconductors, evidencing a strong pinning behavior. The irrevers-
ibility line does not follow a power law behavior with (Tc�T); however, it is well described using an expression developed in the literature,
considering the effect of disorder in the system. The critical current density estimated using the Bean critical-state model is found to be of
the order of 105 A=cm2 below 12 K in the limit of zero magnetic field. A plot of the normalized pinning force density as a function of the
reduced magnetic field at different temperatures shows good scaling, and the analysis suggests that the vortex pinning is due to normal
point-like pinning centers. The temperature dependence of the critical current density suggests that the pinning due to the variation in
the charge carrier mean free path alone is not sufficient to explain the experimental data. The magnetic relaxation rate as a function of
temperature and magnetic field is also studied.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5088823

I. INTRODUCTION

Superconductivity in Fe-pnictides is a field of great interest for
fundamental science as well as for technological advancement.1–4

Since the advent of iron-based superconductors (IBS), many new
superconductors have been discovered in different families of this
interesting class of high Tc superconducting compounds.3 Among
the different families of IBS, the 122-class is more interesting in
terms of technological purposes and also due to the availability of
good quality sizable single crystals.3–8 Recently, a new platform in
the 122-pnictide family was discovered with a chemical formula
(La0:5�xNa0:5þx)Fe2As2 [(La,Na)-122 family].9,10 It is an interesting
and unique member of the 122-family, which allows the investiga-
tion of the electron-hole asymmetry, because in this system, the

doping occurs at the La-Na site with no change taking place in the
Fe-As layers, as opposed to the doping in other 122-pnictide
systems.9–11

Vortex dynamics and pinning mechanism in IBS is quite
interesting due to its salient features12–15 such as low Ginzburg
number (Gi),

16 small anisotropy,17 high intergrain connectivity,18

high upper critical field,19 and moderate Tc.
20 These properties are

vital for technological applications of type-II superconductors.3,4 In
spite of low Ginzburg number (Gi), the vortex phase-diagram of
IBS and low-Tc superconductors (LTS) are quite different in the
sense that the upper critical-field, Hc2(T), and the irreversibility
line, Hirr(T), are separated by a broad vortex-liquid region in IBS,21

whereas in LTS, no appreciable vortex-liquid region exists.
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Our motivation in the present study is to explore the vortex
dynamics in this recently discovered 122-type of IBS.11

In this work, we report a study of vortex dynamics in a single
crystal of the hole-doped La0:34Na0:66Fe2As2 superconductor using
the isofield temperature dependence of the magnetization, M(T),
the isothermal magnetic field dependence of the magnetization,
M(H), and magnetic relaxation, M(t), measurements for H k c-axis.
The obtained vortex phase-diagram shows that the irreversibility
line, Hirr , is very close to the mean field Tc(H)-line, similar to the
behavior in LTS. Critical current density, Jc, and the pinning mecha-
nism are analysed using the models developed by Griessen et al.22

and Dew-Hughes,23 respectively. The magnetic relaxation rate as a
function of temperature and magnetic field is discussed.

II. EXPERIMENTAL

The hole doped La0:34Na0:66Fe2As2 crystal was obtained acci-
dentally when growing the LaFeAsO single crystal with NaAs and
NaF flux. Details of the crystal growth are given in Ref. 11. The
obtained La0:34Na0:66Fe2As2 crystals were characterized using
different experimental techniques (see Ref. 11), which confirm the
good quality of the crystals. These crystals have the same structure
as AeFe2As2 (Ae ¼ alkaline earth metal, e.g., Ca, Sr, Ba) with La
and Na occupying the Ae site. A sample from the same batch as in
Ref. 11 with mass m ¼ 0:1348mg and dimensions 1:54mm�
1:52mm� 0:016 (+0:002)mm was used in the present study. The
magnetic measurements were made using a Quantum Design vibrat-
ing sample magnetometer (VSM) built in a 9 T physical property
measurement system (PPMS), with magnetic fields applied parallel
to the c-axis of the sample. M(T) measurement at H ¼ 10Oe shows
a superconducting transition Tc � 27K and a transition width
ΔTc � 4K. All magnetic measurements were obtained after a stan-
dard zero field cooled (ZFC) procedure. Isothermal M(H) curves
were measured with a ramp field dH=dt ¼ 50Oe=s and obtained in
five quadrants. Isofield M(T) curves were continuously measured
during a slow heating [and cooling in the case of field cooled (FC)
curves] of dT=dt ¼ 0:3K=s. M(t) curves were obtained for a span of
time 1.5 h at various temperatures with H ¼ 30 kOe and at various
magnetic fields at T ¼ 16K.

III. RESULTS AND DISCUSSION

Figure 1(a) shows selected isofield M(T) curves obtained in
both ZFC and FC modes. The ZFC and FC curves separate just
below the temperature region where the magnetization appears to
be flat, with a subtle diamagnetic inclination (normal background).
Figure 1(b) shows a detail of the M(T) curve obtained for H ¼ 1 T,
where the background selected in the normal region follows the
expression Mback ¼ a(H)� b(H)T , where a(H) and b(H) . 0 are
constants for each magnetic field. For curves with H . 3 kOe, a(H)
is negative, which is due to the contribution from a sample holder.
This background contribution was observed for all M(T) curves
and subtracted in the following analysis. The inset of Fig. 1(b)
shows a detail of the main plot near the transition which clearly
shows that it is difficult to resolve the difference between Tc(H), the
mean field transition temperature defined as the temperature for
which magnetization becomes diamagnetic with decreasing temper-
ature, and Tirr , which marks the irreversible temperature at which

the ZFC and FC curves separate. This behavior has been observed
for all M(T) curves.

Therefore, we decided to obtain the irreversible field, Hirr ,
from isothermal hysteresis M(H) curves as shown in Fig. 2(a),
which was limited to our maximum magnetic field of 9 T. It is pos-
sible to see from Fig. 2(a) that all M(H) curves show a small asym-
metry due to a rotation of the x-axis, which is an effect due to the
sample holder signal. This rotation can be fixed by calculating
the equilibrium magnetization, Meq ¼ (Mþ þM�)=2, where Mþ is
the increasing field branch of a M(H) and M� is the decreasing
field branch. The new increasing and decreasing fields branches
can then be obtained after subtracting the measured M(H) from
Meq, which produces symmetric M(H) curves with respect to the
x-axis, evidencing that bulk pinning dominates in the sample. We
define Hirr as the magnetic field where the field increasing and field
decreasing branches of the M(H) curves merge together within the
equipment resolution, �1� 10�5 emu. The critical current density

FIG. 1. (a) Selected isofield M(T ) curves as measured. (b) Isofield M(T ) curves
with and without background subtraction for H ¼ 1 T. The inset shows an
enlarged plot at temperatures near Tc(H).
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associated with each M(H) curve is obtained through the Bean
model24 using the expression,25 Jc ¼ 20ΔM=a(1� a=3b), where
b . a (cm) are the single crystal dimensions defining the area per-
pendicular to the magnetic field, ΔM(emu=cm3), corresponds to
the width of the hysteresis curves and the resulting Jc is given in
A=cm2 units. Figure 2(b) shows the resulting Jc(H) curves as
obtained. The curves for T , 12K show Jc(0) values, the critical
current at zero field, above 105 A=cm2, which is considered the
required threshold value for applications.4 However, Jc suppresses
relatively as fast as the magnetic field increases and shows Jc of the
order of � 104 A=cm2 up to 9 T (maximum field of measurements)
for T , 12K. We believe that the observed critical current density
may be improved by introducing artificial defects as observed in
other iron-pnictide superconductors.26 Among the different families
of pnictide superconductors, the 122-class is the most relevant for
high field application purposes.4 For comparison, in the case of
K-doped (x ¼ 0:3) 122-pnictide superconductors, the observed Jc is
over 105 A=cm2 in a wide temperature and magnetic field range (up
to 0:8Tc, 6 T),

27,28 whereas in the case of Co-doped (x ¼ 0:057) and
P-doped (x ¼ 0:3) 122-pnictide superconductors, Jc . 105 A=cm2 is
observed for T ¼ 0:5 Tc and H ¼ 6 T.28 Similarly, near optimal

doped Ni-122 pnictide superconductors show Jc . 105 A=cm2 in a
wide temperature and magnetic field range.29 The effect of particle
irradiation on the vortex dynamics and Jc would be interesting to
explore in the present sample. A detailed review of the critical
current density and pinning in bulk, thin films, tapes, and wires of
IBS for technological importance is provided in Refs. 3 and 4.

The inset of Fig. 2(b) shows a selected Jc(H) curve at 16 K, evi-
dencing a change in the curvature as Jc(H) approaches zero which
was observed in all curves at higher temperatures. The same effect
can be observed in the respective M(H) curves. This change in cur-
vature (downward to upward curvature as field increases) is usually
a precursor of the peak effect occurring in Jc(H) curves,30 which is
absent in our sample. The interesting point of this effect is that
Jc(H) approaches zero with a downward curvature, while usually it
approaches zero exponentially (upward curvature).

In order to better understand this effect, we have obtained
magnetic relaxation measurements, M(t), as a function of magnetic
field and temperature. The resulting M(t) curves plotted as ln (M)
vs. ln t produced the usual linear behavior, allowing us to obtain
the relaxation rate R ¼ �d[ln (M)]=d[ln t], as shown in Fig. 3(a).
Figure 3(b) shows a plot of R vs. H at T ¼ 16K, where R decreases
monotonically as the field increases, evidencing the strength of the
pinning as the field increases.

FIG. 3. (a) A typical magnetic relaxation curve measured during 1.5 h, showing
usual linear time dependence. (b) Relaxation rate, R ¼ �d[ln (M)]=d[ln t], for
T ¼ 1 K, plotted as a function of the magnetic field.

FIG. 2. (a) Isothermal M(H) curves as measured. (b) Isothermal Jc(H) curves
as obtained from the Bean model. The inset shows details of Jc(H) curve at 16
K, showing a change in curvature as Jc(H) decays.
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Figure 4(a) shows a plot of U0 vs. T for H ¼ 3T. Two
different slopes at intermediate temperature suggest a change in the
pinning mechanism. Figure 4(b) shows a plot of the apparent acti-
vation pinning energy, U0 ¼ R=T , against 1=Jc, obtained for
H ¼ 3T, which despite the fact that the values of the exponents do

not correspond to the expected ones31 ( μ � 1 and p � �0:5), the
overall behavior suggests the existence of a crossover in the pinning
mechanism of the type elastic to plastic occurring at some tempera-
ture between 10 K and 14 K.31 This crossover has been associated
with the fish-tail effect found in M(H) curves,31 which is absent in
our curves. Similarly, in K-doped BaFe2As2, a pinning crossover is
suggested through the U0 vs. 1=J plot; however, no fish-tail effect is
observed for that temperature range.30 Therefore, it would be mis-
leading to interpret the behaviour of R vs. T and U0 vs. 1/J plots as
a pinning crossover because there is no effect of such crossover in
the measured isothermal M(H) curves. Figure 4(c) shows a plot of
the activation energy U ¼ �T ln (dM=dt)þ CT as obtained in
Ref. 32, where the smooth curve was obtained with a constant
C ¼ 10. Parameter C depends on the attempt frequency, hoping
distance, and sample dimension. It must be mentioned that the
smooth curve following a log (M) behavior, as in Ref. 32 for
YBaCuO, was obtained without the need of a temperature scaling.
Also, the values of U in Fig. 4(c) are of the same order of magnitude
of the values found for YBaCuO in Ref. 32 at similar reduced tem-
peratures. The scaling of U(M) with magnetic field for data obtained
at T ¼ 16K, as performed in Refs. 33–35, would point to a possible
pinning crossover, as suggested in Fig. 3(b). Nevertheless, we could
not find any reasonable scaling at this temperature.

Figure 5 shows the vortex phase-diagram where the values of
Hirr are very close to values of Tc(H). Such a wide irreversible
region, as shown in Fig. 2(a), suggests that the studied system has
potential for applications. In the phase-diagram (Fig. 5), at high tem-
peratures, Tc(H) increases linearly with dHc2(T)=dT ¼ �3:1 T=K,
which from the Werthamer-Helfand-Hohenberg (WHH) formula36

renders Hc2(0) ¼ �0:695 Tc and dHc2(T)=dT ¼ 58T. This value
is higher than the Pauli paramagnetic limit for Hc2(0) given by
Hp ¼ 1:84 and Tc ¼ 50T.37 The Maki parameter36 defined as
α ¼ Hc2(0)=

ffiffiffi
2

p
Hp ¼ 0:82 for the studied sample. Systems possessing

FIG. 4. (a) A plot of U0 vs. T for H ¼ 3 T. (b) Apparent activation energy, U0
obtained from the magnetic relaxation for H ¼ 3 T, plotted against 1=Jc(T ). (c)
Activation energy curve obtained from Maley’s approach for H ¼ 3 T, plotted
against magnetization.

FIG. 5. Vortex phase-diagram of La0:34Na0:66Fe2As2. The dotted line is a fitting
to the irreversibility line curve (see text for details).
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α . 1 are candidates to exhibit the exotic Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase.38,39 Since our system has an anisotropy
γ ¼ 1:9, 11 the FFLO phase is a candidate to appear for H k ab
planes. We observed that the irreversibility line does not follow a
power law behavior with (Tc�T) as is commonly observed in many
superconductors. In addition, the proximity of the irreversibility line
to the Tc(H) line resembles the behavior observed in low Tc systems,
as, for instance, in NbSe2.

40 Hirr(T) has been described in Refs. 41
and 42 by an expression which takes into account the disorder in the
system. Even for NbSe2, the Hirr(T) line is visibly further apart from
the Hc2(T) line than what is observed in our sample. The dotted line
in Fig. 5 represents the best fit of the Hirr(T) data to the expression
provided in Refs. 41 and 42, which is mentioned in the following:

1� t � bþ 3np(1� t)2 4π � 2
ffiffiffiffiffiffiffi
2Gi

p
tb ¼ 0,

where t ¼ T=Tc is the reduced temperature, b ¼ H=Hc2(0), np mea-
sures the disorder in the system, and Gi is a different definition of
the Ginzburg number which measures the importance of thermal
fluctuations. In that expression, b, np, and Gi are fitting parameters,
and the dotted line shown in Fig. 5 was obtained for a slightly
higher Tc ¼ 28K, np ¼ 0:002, Gi � 10�8, and Hc2(0) ¼ 60T. It is
observed that both Gi and np show a good fit within 10% of the
fitted values, whereas Hc2(0) may vary within 4% of the value
obtained from the fitting. The value of np is similar to that obtained
in Ref. 41 for NbSe2, Hc2(0) is similar to the value obtained from
the WHH expression, but Gi is three orders of magnitude lower
than the value obtained for NbSe2. We do not have explanation for
such a low value of Gi in the present case. The importance of
thermal fluctuations is sometimes associated with the extension of

the reversible region, which in our case is virtually absent from the
M(T) curves.

We present in Fig. 6(a), the plot of the normalized pinning
force density, Fp=Fpmax , as a function of the reduced magnetic field
h ¼ H=Hirr , where Fp ¼ Jc � H. The collapse of the many different
isothermal pinning force curves is evident on the graph. This plot
allows us to obtain the reduced magnetic field (h) for which the
pinning force reaches its maximum, hmax ¼ 0:45, and a fitting
of the resulting curve to the Dew-Hughes formula23 Fp=Fpmax ¼
Ahp(1� h)q produced A ¼ 5:14, p ¼ 1:08, and q ¼ 1:32, where
p=(pþ q) ¼ hmax ¼ 0:45 as obtained from the experimental data.
This fitting has been applied to examine the pinning force on
many systems over the years,43 and the different values obtained for
the parameters hmax , p, and q are used to determine the type of the
dominant pinning.23,43–45 In a classic paper, Dew-Hughes discussed
the various scenarios of pinning centers involved in different
pinning mechanisms.23 For a system having pinning due to the
variation in the charge carrier mean free path (δl-pinning) and the
pinning centers are point-like, the maximum in the normalized
pinning force density occurs at h ¼ 0:33, with p ¼ 1 and q ¼ 2. In
the case of the pinning due to the variation in the superconducting
transition temperature (δTc-pinning), the maximum in the normal-
ized pinning force density is found to be at much higher h values,
in short, for point pinning centers, h ¼ 0:67, with p ¼ 1, q ¼ 2; for
surface pinning centers, h ¼ 0:6, with p ¼ 1:5 and q ¼ 1; and for
volume pinning centers, h ¼ 0:5, with p ¼ q ¼ 1. Therefore, in the
present study, h ¼ 0:45 with p ¼ 1:08 and q ¼ 1:32 shows that a
single type of pinning is not sufficient to explain the results. However,
similar values of h have also been observed in many other studies of
iron-pnictide superconductors, such as for BaFe1:9Ni0:1As2, h ¼ 0:4,45

for Ca0:8La0:2Fe1�xCoxAs2, h ¼ 0:44,31 for Ba0:68K0:32Fe2As2,
h ¼ 0:43,46 and for Ba(Fe1�xCox)2As2, h ¼ 0:45.47 In such studies,
the value of h � 0:45 is attributed to an inhomogeneous distribution
of dopants or Arsenic deficiency.46 Shahbazi et al.45 argued that
h ¼ 0:4 in the case of BaFe1:9Ni0:1As2 is due to the δl-type pinning.
Zhou et al.31 related h ¼ 0:44 with the randomly distributed nano-
scale point-like defects, which is common in the case of iron pnic-
tide superconductors.31,46,48 Therefore, h ¼ 0:45 in our case is
attributed to the δl-type pinning due to point pinning centers,
whereas for δTc pinning, the maximum in normalized pinning
force density would occur at h higher than 0.5. The type of pinning
can be further examined following an approach developed in Ref. 22,
where the temperature dependent critical current at zero field
Jc(T), normalized by the critical current at zero field at T ¼ 0, is
plotted against t ¼ T=Tc. The equivalent plot for our data is shown
in Fig. 6(b), which is compared to the theoretical expression for
δl-type of pinning, where Jc(T)=Jc(0) ¼ (1þ t2)�1=2(1� t2)5=2 and
for δTc-type pinning, Jc(T)=Jc(0) ¼ (1� t2)7=6(1þ t2)5=6.22 It is
evident from Fig. 6(b) that the δl-type pinning alone cannot explain
the experimental data adequately.

IV. CONCLUSIONS

In conclusion, the vortex phase-diagram of the newly synthe-
sized iron-based superconductor La0:34Na0:66Fe2As2 shows an irre-
versibility line very close to the mean field transition temperature
Tc(H) evidencing a strong pinning. The irreversibility line does not

FIG. 6. (a) Normalized pinning force density plotted against the reduced
magnetic field. The experimental data taken at different temperatures collapsed
into a single scaled curve, which is fitted using the expression,
Fp=Fpmax ¼ Ahp(1� h)q, where p and q are fitting parameters, which define
the pinning characteristics. (b) Normalized critical current density, Jc(T )=Jc(0),
as a function of reduced temperature, T=Tc . The solid lines represent the δl
and δTc pinning behavior.
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follow the usual power law with (Tc�T), but it was successfully
fitted by an expression developed in Refs. 41 and 42, considering
the effect of disorder, where a considerably low disorder similar
to that observed for NbSe2

41,42 was found for our system. We
observed that the upper critical field at zero temperature exceeds
the prediction of the Pauli paramagnetic limit, suggesting that the
system is a candidate to show the FFLO phase for Hkab-planes.
The critical current density at the zero magnetic field reaches the
threshold value Jc . 105 A=cm2 for temperatures below 12 K,
which, along with the fact that the irreversibility line is very close
to Tc(H), makes the system technologically relevant. The magnetic
relaxation obtained as a function of field for a fixed temperature
shows that the relaxation rate monotonically decreases as the field
increases, while the magnetic relaxation obtained for a fixed field as
a function of temperature suggests a crossover in the pinning
mechanism. The latter results allowed us to obtain a smooth curve
of the isofield activation energy with magnetization, as first done
by Maley,32 where the observed log (M) behavior and values are
similar to the ones obtained in Ref. 32 for YBaCuO. The pinning
analysis using the Dew-Hughes model suggests a δl-type pinning
due to the point pinning centers. However, the temperature depen-
dence of the critical current density indicates that δl pinning alone
cannot explain the data adequately. To explore this compound for
technological use, the effect of grain boundaries on the critical
current density and vortex dynamics in polycrystalline and thin
film samples is yet to be investigated.
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