Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN_{1-x}O_x (x = 0.15, 0.6) Iron Pnictide *

Hui-Can Mao(毛慧灿)^{1,2}, Bing-Feng Hu(胡丙锋)^{3**}, Yuan-Hua Xia(夏元华)³, Xi-Ping Chen(陈喜平)³, Cao Wang(王操)⁴, Zhi-Cheng Wang(王志成)⁵, Guang-Han Cao(曹光旱)^{5,6}, Shi-Liang Li(李世亮)^{2,7,8}, Hui-Qian Luo(罗会仟)^{2,7*}

¹Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875 ²Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing

100190

³Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry,

China Academy of Engineering Physics, Mianyang 621999

⁴Department of Physics, Shandong University of Technology, Zibo 255049

⁵Department of Physics and State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027

⁶Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093

⁷Songshan Lake Materials Laboratory, Dongguan 523808

⁸School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190

(Received 14 July 2019)

We use neutron powder diffraction to study the non-superconducting phases of ThFeAsN_{1-x}O_x with x = 0.15, 0.6. In our previous results of the superconducting phase ThFeAsN with $T_{\rm c} = 30$ K, no magnetic transition is observed by cooling down to 6K, and possible oxygen occupancy at the nitrogen site is shown in the refinement [Europhys. Lett. 117 (2017) 57005]. Here in the oxygen doped system ThFeAs $N_{1-x}O_x$, two superconducting regions $(0 \le x \le 0.1 \text{ and } 0.25 \le x \le 0.55)$ are identified by transport experiments [J. Phys.: Condens. Matter 30 (2018) 255602]. However, within the resolution of our neutron powder diffraction experiment, neither the intermediate doping x = 0.15 nor the heavily overdoped compound x = 0.6 shows any magnetic order from 300 K to 4 K. Therefore, while it shares the common phenomenon of two superconducting domes as most 1111-type iron-based superconductors, the magnetically ordered parent compound may not exist in this nitride family.

PACS: 74.70.Xa, 74.62.Bf, 61.05.F-

DOI: 10.1088/0256-307X/36/10/107403

Understanding the magnetic ground state is one of the major task in the mechanism research of ironbased superconductors, where the magnetic interactions are generally believed to be involved in the superconducting pair process.^[1-3] In most families of iron pnictide or chalcogenide superconductors, a longrange antiferromagnetic order always emerges in the undoped parent compounds,^[4] such as the collinear order in LaFeAsO (1111 family),^[5] BaFe₂As₂ (122 family),^[6] $Na_{1-\delta}$ FeAs (111 family),^[7] the bi-collinear order in Fe_{1+x}Te (11 family),^[8] and the $\sqrt{5} \times \sqrt{5}$ block order in $K_2Fe_4Se_5$.^[9-11] Even in the stoichiometrically hole-type superconducting system $CaKFe_4As_4$ (1144) family), compensating electron doping by Ni or Co can induce a spin-vortex phase (hedgehog order) with C_4 rotation symmetry.^[12,13] Another C_4 magnetic order can be found in the hole-doped $Ba_{1-x}(K, Na)_x Fe_2 As_2$ systems near the optimal doping.^[14,15] Specifically for the 1111 family (e.g., LaFeAsO),^[16,17] supercond ductivity can be induced by doping fluorine, [17-21] hydrogen[22-25] and phosphorus[26-31] into the parent compound, where they all result in a twosuperconducting-dome structure with slightly different optimal $T_{\rm c}$. Antiferromagnetic parent compounds for both sides are discovered by neutron diffraction, muon spin relaxation (μ SR) and nuclear magnetic resonance (NMR) experiments.^[24,25,32,33]

Recently, a new nitride iron pnictide superconductor ThFeAsN has been discovered with intrinsic $T_c = 30 \,\mathrm{K}.^{[34]}$ The layered tetragonal ZrCuSiAstype structure consisting of $[Th_2N_2]$ and $[Fe_2As_2]$ blocks is classified as a 1111-type iron-based superconducting family (inset of Fig. 1). Although the firstprinciples calculations of ThFeAsN indicate that the lowest-energy magnetic ground state is the collinear stripe-type antiferromagnetic state,^[35,36] the normalstate resistivity/magnetization do not show any magnetic anomaly above T_c ,^[34] further ⁵⁷Fe Mössbauer spectroscopy, neutron powder diffraction, μ SR and NMR experiments have not found any magnetic or-der down to $2 \,\mathrm{K}$, $^{[37-40]}$ either. Possible extra electrons from nitrogen deficiency or oxygen occupancy at the nitrogen site make the compound approximate to the optimal doping level.^[38] Indeed, by

^{*}Supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant Nos XDB07020300 and XDB25000000, the National Key Research and Development Program of China under Grant Nos 2017YFA0303103, 2017YFA0302903 and 2016YFA0300502, the National Natural Science Foundation of China under Grant Nos 11374011, 11504347, 11304183, 11674406 and 11822411, the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016004, the Key Laboratory of Neutron Physics of CAEP under Grant No 2015AB03, and the Science Challenge Project under Grant No TZ2016004.

^{*}Corresponding author. Email: hqluo@iphy.ac.cn; hbf@caep.cn

^{© 2019} Chinese Physical Society and IOP Publishing Ltd

doping oxygen into the system, the superconductivity of ThFeAsN $_{1-x}O_x$ is quickly suppressed until x = 0.1.^[41] Surprisingly, a second superconducting dome emerges from x = 0.25 to x = 0.55 with maximum T_c about 15 K (Fig. 1),^[41] which closely resembles the two superconducting domes in the phase diagrams of $LaFeAsO_{1-x}H_x$, $LaFeAsO_{1-x}F_x$ and LaFeAs_{1-x} P_xO systems.^[19,22-29,31] It should be noticed that the hydrogen doped 1111 systems always have double parent compounds with different magnetic structures and ordered moments adjacent to each superconducting dome, [24, 25, 33] and the intermediate non-superconducting phase of $LaFeAs_{1-x}P_xO$ is magnetically ordered.^[30-32] Thus it is essential to examine the possible magnetic order in the ThFeAsN $_{1-x}O_x$ system, especially for the non-superconducting dopings.

Fig. 1. Superconducting phase diagram and crystal structure of ThFeAsN $_{1-x}O_x$. The arrows mark two dopings in this study.

In this Letter, we report a neutron powder diffraction study on the non-superconducting phases of ThFeAsN_{1-x}O_x with x = 0.15, 0.6. By cooling down from 300 K to 4 K, no magnetic order is found within the instrument resolution. The refinement shows a slight compression of the unit cell volume and a lift of the Th position upon oxygen doping. Together with our previous results on the undoped compound ThFeAsN, we conclude that no magnetic parent compound exists in this nitride family. The two separated superconducting regions may come from a combination effect of electron doping and uniaxial chemical pressure from oxygen substitutions.

Polycrystalline samples of ThFeAsN_{1-x}O_x (x = 0.15, 0.6) were synthesized by the solid-state reaction method as described elsewhere.^[34,41] About 5 g high pure powders were prepared for each doping, and sealed in a vanadium can. Neutron powder diffraction experiments were carried out on a high resolution neutron diffractometer (HRND) at the Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics. The wavelength of neutron was selected to be $\lambda = 1.8846$ Å for both the samples. The scattering data were collected at 4 K and 300 K by covering

the scattering angle 2θ of $10-145^{\circ}$. All these diffraction patterns were refined with the Rietveld method within the program FullProf,^[42] and the structural parameters were obtained by assuming the occupancy is the same as chemical composition.^[38]

Fig. 2. Raw data of neutron powder diffraction for (a) ThFeAsN $_{0.85}O_{0.15}$ and (b) ThFeAsN $_{0.4}O_{0.6}$. All peaks are indexed by the tetragonal ZrCuSiAs-type structure.

The raw data of neutron diffraction patterns are presented in Fig. 2. For the x = 0.15 sample, the diffraction patterns almost overlap between $T = 4 \,\mathrm{K}$ and $T = 300 \,\mathrm{K}$. All reflections can be indexed by a tetragonal phase in ZrCuSiAs-type structure^[43] with the space group P4/nmm, except for two tiny peaks (marked by inverted triangles) from Fe₂As or ThO₂ impurity phases (Fig. 2(a)). Similar results are obtained on the x = 0.6 sample, as shown in Fig. 2(b). As both data sets at base temperature and room temperature can be fully identified as nuclear peaks, and no additional peaks emerge at low temperature, we tend to consider no magnetic order in both the compounds within the measurement resolution of HRND. Here the slight difference between the $T = 4 \,\mathrm{K}$ and $T = 300 \,\mathrm{K}$ patterns can be attributed to the background change, and the peak shift at high angles is due to thermal expansion of the lattice.

To quantitatively compare the neutron diffraction results, we have performed the Rietveld refinement for four data sets by assuming the occupancy is the same as chemical composition, as shown in Fig. 3. The weighted profile factor $R_{\rm wp}$ without the background is slightly higher than the previous results on ThFeAsN,^[38] which may be attributed to the much lower neutron flux of this high resolution diffractometer in comparison with WOMBAT highintensity diffractometer at the Australian Centre for Neutron Scattering (ACNS). Again, four sets of the diffraction patterns can be refined quite well by the space group P4/nmm without any magnetic scattering, suggesting no static magnetic order in both the samples. This is consistent with the magnetic susceptibility measurements, where no anomaly related to magnetic transition can be observed in $\chi(T)$, and only Pauli paramagnetic behavior shows up instead of the Curie–Weiss behavior. All crystallographic pa-

rameters obtained from the refinements are listed in Tables 1 and 2.

Fig. 3. Refinement results of neutron powder diffraction patterns for ThFeAsN $_{0.85}O_{0.15}$ at (a) 4K and (b) 300 K; and identical refinement results for ThFeAsN $_{0.4}O_{0.6}$ at (c) 4K and (d) 300 K.

Table 1. Crystallographic data of $ThFeAsN_{0.85}O_{0.15}$ at 4 K.

Space group	P4/nmm		$R_{\rm wp}$	8.77(3)	
$a(\text{\AA})$	4.0156(3)		$h_{\mathrm{Th}-A}$	1.7037(8)	
c (Å)	8.4305(1)		$h_{\rm Fe-A}$	1.3185(1)	
$\alpha_{\rm As-Fe-As}$	113.4°		$d_{\mathrm{Th}-A}$	3.311(4)	
$\beta_{\rm As-Fe-As}$	107.55°		$d_{\rm Fe-A}$	2.403(3)	
Atom	Wyckoff	x	y	z	$U_{\rm iso}$
$^{\mathrm{Th}}$	2c	0.25	0.25	0.1415(1)	0.1232
Fe	2b	0.75	0.25	0.5	0.2542
As	2c	0.25	0.25	0.6564(8)	0.1495
Ν	2a	0.75	0.25	0	0.3374
Ο	2a	0.75	0.25	0	0.3374

Table 2. Crystallographic data of ThFeAsN_{0.4}O_{0.6} at 4 K.

Space group	P4/nmm		$R_{\rm wp}$	8.85(1)	
$a(\text{\AA})$	3.9727(9)		$h_{\mathrm{Th}-A}$	1.5671(1)	
$c(\text{\AA})$	8.4253(1)		$h_{\rm Fe-A}$	1.4061(8)	
$\alpha_{\rm As-Fe-As}$	109.4°		$d_{\mathrm{Th}-A}$	3.216(3)	
$\beta_{\rm As-Fe-As}$	109.5°		$d_{\rm Fe-A}$	2.434(3)	
Atom	Wyckoff	x	y	z	$U_{\rm iso}$
$^{\mathrm{Th}}$	2c	0.25	0.25	0.1471(8)	1.0259
Fe	2b	0.75	0.25	0.5	0.8284
As	2c	0.25	0.25	0.6669(3)	0.0694
Ν	2a	0.75	0.25	0	0.8296
Ο	2a	0.75	0.25	0	0.8296

We finally compare the structural parameters for all the three compounds measured by neutron scattering: ThFeAsN, ThFeAsN_{0.85}O_{0.15} and ThFeAsN_{0.4}O_{0.6}. Figure 4 summarizes the oxygen doping dependence of the lattice parameters and z position of Th and As. Both a and c decrease upon oxygen doping at low temperature, while c recovers a little for x = 0.6 at room temperature (Figs. 4(a) and 4(b)), suggesting that the volume of unit cell is compressed by chemical doping. The z position of As are almost the same for all the three compounds, but the z position of Th obviously increases upon oxygen doping, suggesting the substitution of nitrogen by oxygen mainly affects the $[\text{Th}_2\text{N}_2]$ layer. By carefully comparing the results in Tables 1 and 2 with ThFeAsN data,^[38] a systematic distortion of the FeAs₄ tetrahedron is also found, where $\alpha_{\text{As}-\text{Fe}-\text{As}}$ and $\beta_{\text{As}-\text{Fe}-\text{As}}$ show different behaviors when increasing oxygen doping. The microscopic distortion of the lattice structure rather than the phase transition can be explained by uniaxial chemical pressure, which may give the result in the two separated superconducting regions in combination from the doping effect.^[41]

Fig. 4. Oxygen doping dependence of the lattice parameters [(a), (b)] and z position [(c), (d)] of Th and As in the ThFeAsN_{1-x}O_x system.

In summary, we have carried out neutron diffraction experiments on non-superconducting phases of ThFeAsN_{1-x}O_x with x = 0.15, 0.6. None of them shows any magnetic order down to 4 K. Therefore, despite the two superconducting phases with different optimal T_c similar to other 1111-type iron-based superconductors, this oxygen doped nitride iron-based superconductor may not have magnetically ordered parent compounds. Further inelastic neutron scattering experiments are highly desired to measure the spin dynamics and check whether it interplays with superconductivity in this nitride family.

The authors are grateful to Qingzhen Huang at NIST, USA for the help on data analysis.

References

- [1] Dai P C 2015 *Rev. Mod. Phys.* 87 855
- [2] Si Q, Yu R and Abrahams E 2016 Nat. Rev. Mater. 1 16017
- [3] Inosov D S 2016 C. R. Phys. **17** 60
- [4] Stewart G R 2011 Rev. Mod. Phys. 83 1589
- [5] de la Cruz C et al 2008 *Nature* **453** 899
- [6] Huang Q Z et al 2008 Phys. Rev. Lett. **101** 257003
- [7] Li S L et al 2009 Phys. Rev. B 80 020504(R)
- [8] Li S L et al 2009 Phys. Rev. B 79 054503
- Bao W, Huang Q Z, Chen G F, Green M A, Wang D M, He J B and Qiu Y M 2011 Chin. Phys. Lett. 28 086104
- [10] Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H and Fang M H 2011 *Phys. Rev. Lett.* **107** 137003
- [11] Wang M et al 2011 Phys. Rev. B 84 094504
- [12] Meier W R et al 2018 npj Quantum Mater. 3 5
- [13] Kreyssig A et al 2018 Phys. Rev. B 97 224521
- [14] Böhmer A E, Hardy F, Wang L, Wolf T, Schweiss P and Meingast C 2015 Nat. Commun. 6 7911
- [15] Avci S et al 2014 Nat. Commun. 5 3845
- [16] Hosono H et al 2015 Sci. Technol. Adv. Mater. 16 033503
- [17] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
- J. Am. Chem. Soc. 130 3290

 [18] Luetkens H et al 2009 Nat. Mater. 8 305
- [19] Yang J et al 2015 Chin. Phys. Lett. 32 107401
- [20] Yang J, Oka T, Li Z, Yang H X, Li J Q, Chen G F and Zheng G Q 2018 Sci. Chin.-Phys. Mech. Astron. 61 117411
- [21] Xiao Y, Su Y, Mittal R, Chatterji T, Hansen T, Kumar C M N, Matsuishi S, Hosono H and Brueckel T 2009 Phys.

Rev. B **79** 060504(R)

- [22] Matsuishi Set al 2012 Phys. Rev. B 85 014514
- [23] Iimura S, Matuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M and Hosono H 2012 Nat. Commun. 3 943
- [24] Fujiwara N, Tsutsumi S, Iimura S, Matsuishi S, Hosono H, Yamakawa Y and Kontani H 2013 Phys. Rev. Lett. 111 097002
- [25] Hosono H and Matsuishi S 2013 Curr. Opin. Solid State Mater. Sci. 17 49
- [26] Wang C et al 2009 *Europhys. Lett.* **86** 47002
- [27] Kitagawa S, Iye T, Nakia Y, Ishida K, Wang C, Cao G H and Xu Z A 2014 J. Phys. Soc. Jpn. 83 023707
- [28] Miyasaka S, Takemori A, Kobayashi T, Suzuki S, Saijo S and Tajima S 2013 J. Phys. Soc. Jpn. 82 124706
- [29] Lai K T, Takemori A, Miyasaka S, Engetsu F, Mukuda H and Tajima S 2014 Phys. Rev. B 90 064504
- [30] Shen C, Si B, Cao C, Yang X, Bao J, Tao Q, Li Y, Cao G and Xu Z A 2016 J. Appl. Phys. 119 083903
- [31] Miyasaka S et al 2017 Phys. Rev. B 95 214515
- [32] Mukuda H, Engetsu F, Shiota T, Lai K T, Yashima M, Kitaoka Y, Miyasaka S and Tajima S 2014 J. Phys. Soc. Jpn. 83 083702
- [33] Hiraishi M et al 2014 Nat. Phys. $\mathbf{10}$ 300
- [34] Wang C et al 2016 J. Am. Chem. Soc. 138 2170
- [35] Singh D J 2016 J. Alloys Compd. 687 786
- [36] Wang G and Shi X 2016 Europhys. Lett. 113 67006
- [37] Albedah M A et al 2017 J. Alloys Compd. 695 1128
- [38] Mao H C, Wang C, Maynard-Casely H E, Huang Q Z, Wang Z C, Cao G H, Li S L and Luo H Q 2017 Europhys. Lett. 117 57005
- [39] Shiroka T, Shang T, Wang C, Cao G H, Eremin I, Ott H R and Mesot J 2017 Nat. Commun. 8 156
- $\left[40\right]$ Adroja D et al 2017 Phys. Rev. B 96 144502
- [41] Li B Z et al 2018 J. Phys.: Condens. Matter 30 255602
- [42] Rodríguez-Carvajal J 1993 Physica B 192 55
- [43] Muir S and Subramanian M A 2012 Prog. Solid State Chem.
 40 41