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In metals, electrons in a magnetic field undergo cyclotron motion, leading to oscillations
in physical properties called quantum oscillations. This phenomenon has never been
seen in a robust insulator because there are no mobile electrons. We report an exception
to this rule. We study a Mott insulator on a kagome lattice which does not order
magnetically down to milli-Kelvin temperatures despite antiferromagnetic interactions.
We observe a plateau at magnetization equal to 1

9 Bohr magneton per magnetic
ion, accompanied by oscillations in the magnetic torque, reminiscent of quantum
oscillations in metals. The temperature dependence obeys Fermi distribution. These
phenomena are consistent with a quantum spin liquid state whose excitations are
fermionic spinons with a Dirac-like spectrum coupled to an emergent gauge field.

quantum spin liquid | magnetization plateau | quantum oscillations

In conventional metals, electrons form Landau Levels in a magnetic field, leading to
magnetic oscillations in their physical properties. In the absence of charged Fermi
surfaces, a robust insulator is NOT expected to host any quantum oscillations. Therefore,
the recent observations of Landau Level quantization in narrow-gap, correlated Kondo
insulators (1–6) have created a lot of excitement. These developments lead naturally to the
next question: Can quantum oscillations be observed in wide-gap correlated insulators, in
particular, in nonmagnetic Mott insulators? In lattices with an odd number of electrons
per unit cell, strong repulsion between electrons may result in a Mott insulator, where
the electrons are localized on lattice sites, forming S = 1

2 moments. The moments
interact via antiferromagnetic (AF) interactions, and usually form an ordered AF state. In
frustrated lattices, magnetic ordering may be suppressed due to frustration and quantum
fluctuations, resulting in a novel state of matter called the quantum spin liquid (7, 8).
Some versions of the quantum spin liquid are predicted to host exotic particles such as
gapless fermions which carry S= 1

2 but no charge (called spinons), coupled to an emergent
gauge field (9, 10). Indeed it has been proposed that these low energy excitations
can lead to quantum oscillations in certain spin liquid candidates which are charge
insulators (11).

The kagome lattice exhibits a high degree of frustration and is a strong candidate
for hosting a spin liquid (9, 10, 12–14). Experimentally, herbertsmithite is the most
famous example of a kagome Mott insulator, leading to fascinating discoveries (15).
Unfortunately, while the Cu ions in the kagome layers remain pristine (16, 17), a
significant fraction of the Zn sites that lies between the kagome planes are substituted
by Cu, creating impurity spins that can dominate the low temperature spectrum,
thermodynamics, and magnetic properties (18, 19). A search for oscillations in this
kagome Mott insulator was conducted but was unsuccessful (20). The recent discovery
of YCu3(OH)6Br2[Br1−y(OH)y] (YCOB), in which Zn is replaced by Y, solves the site
mixing problem thanks to the very different ionic sizes of Y and Cu (21–24). These
materials do not show magnetic order down to 50 mK, but there remains disorder
in the exchange constants caused by the random replacement of Br above and below
the Cu hexagons by OH (23). It should also be mentioned that the so-called perfect
Y-based kagome crystal YCu3(OH)6Cl3 with Cl instead of Br and without the OH
disorder, was the first to be developed (25) and later found to order at 15 K (26). This
is not unexpected because the presence of a Dzyaloshinskii Moriya (DM) coupling is
theoretically known to favor ordering (27–29). On the other hand, the closely related
Y-kapellasite Y3Cu9(OH)19Cl8 has a tripled inplane unit cell and orders at a lower
temperature of 2.1 K (30). Therefore, OH substitution and the subsequent disorder
may play a role in suppression AF ordering, as discussed in a recent detailed study (31).
The role of disorder is a complicated question and we will defer further comments to
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Discussion below. At this point, we simply note this class of
crystals exhibits a great deal of richness and complexity and we
are motivated to study the magnetic behavior of YCOB under
intense magnetic fields. We should also emphasize that while
YCOB in zero field has been claimed to harbor Dirac spinons
(22, 23) and have been under intense studies (31, 32), the current
paper focuses on the behavior under strong magnetic field, and
the connection of the state of matter that we uncover with the
zero field case is left for future studies.

Results

Five YCOB single-crystal samples are used in the torque
magnetometry measurements, and two batches of YCOB single
crystals are measured using extraction magnetometry. Fig. 1A
shows the crystal structure of YCOB, with detailed information
given in ref. 22. Samples M1 and M2 comprise several thin
crystals stacked in a Vespel ampoule with their c-axes or ab-planes
aligned. We use compensated-coil extraction magnetometry (33)
(see sketch in SI Appendix, Fig. S2A) to measure the overall
magnetization in pulsed magnetic fields �0H of up to 60 T and
73 T. The field is applied parallel and perpendicular to crystal
c-axis in separate experiments. Sample S1 is the main single
crystal measured using cantilever magnetometry in a DC magnet
(0 ≤ �0H ≤ 41 T). The magnetic torque of three more YCOB
single crystals (Sample S2, D1, and D2) was measured in two
DC magnets, and the torque of one more YCOB single crystal
(Sample S5) was measured in a 60 T pulsed magnet. Details
and sample growth information can be found in Materials and
Methods.

The overall magnetization curves shown in the Upper panel of
Fig. 1B are derived by averaging data from multiple field pulses
recorded with T ≈ 0.6 K. A small anisotropy is observed in
both M and the characteristic fields; the ratio is consistent with
the reported g-factor anisotropy (22). For �0H > 55 T, the

magnetization reaches a plateau at around 0.35�B per Cu atom
(where �B is the Bohr magneton), indicating the 1

3 plateau (34–
38). According to the model in ref. 36, the 1

3 plateau begins
at 0.83J in a kagome Heisenberg antiferromagnet, where J is
the nearest-neighbor AF exchange constant. We can therefore
estimate that J ≈ 44.5 K, which is comparable to the value
reported in ref. 23. In addition to the 1

3 plateau, at �0H ≈ 18 T,
a feature appears in the M(H) curve, with M ≈ 0.11�B per
Cu, providing evidence for a 1

9 plateau. Studies conducted in
parallel to ours have also reported this plateau (39, 40). Note
that the 1

9 plateau has been anticipated by theory. Density-matrix
renormalization group (DMRG) work on the Heisenberg model
on the kagome lattice has revealed a 1

9 plateau (36), considered
to be an indication of exotic physics (36, 38, 41) while tensor
network methods favor a valence bond solid which triples the
unit cell (42, 43). A recent variational Monte Carlo calculation
based on the Gutzwiller projection of a fermionic state yields a
Z3 spin liquid with energy in good agreement with the DMRG
calculation (44).

Further information comes from the differential magnetic
susceptibility � ≡ dM

dH shown in the Lower panel of Fig. 1B;
a V -shape dip appears at the center of the 1

9 plateau. The
dips are centered at �0H0 ≈ 20.4 T for H ‖ c and �0H0 ≈
22.3 T for H ⊥ c. These field differences are consistent
with the g-factor anisotropy. Another batch of single crystals
were prepared as Sample M2 for extraction magnetometry to
get a more detailed T -dependence of the magnetization. The
corresponding magnetic susceptibility is shown in Fig. 1C, and
the raw magnetization data are given in SI Appendix, Fig. S2A.
We notice that the minimum in magnetic susceptibility around
H0 ∼ 20 T does not saturate when T approaches zero, even
at the lowest temperature (0.6 K∼ 0.01J ). To quantitatively
evaluate the temperature dependence of the 1

9 plateau, the value

A B C

Fig. 1. Magnetization plateaus. (A) Structure of YCOB. Cu and Y are in the z = 0 plane. The Br sites above and below Y are randomly admixed with OH. The
O sites around the hexagon are alternately buckled up and down off the plane. (B) Top panel: Magnetization M of YCOB sample measured in pulsed magnetic
fields of up to 70 T with H ‖ c and H ⊥ c. The measurement setup is shown in the Inset of SI Appendix, Fig. S2A. Both 1

9 and 1
3 plateaus were observed in M.

Black and blue curves show measurements in the PPMS up to 14 T in the two directions for comparison. Bottom panel: The differential magnetic susceptibility
dM
dH measured in pulsed fields. The low-field arrow indicates the location of the Dirac point crossing H0, and the high-field arrow indicates the onset of the 1

3
plateau Hs . H0 and Hs along the ab-plane shift to higher fields, consistent with the known g-factor anisotropy. For clarity, the H ‖ c curve is shifted with zero
marked by the dotted line. (C) The temperature dependence of dM

dH measured on YCOB sample M2 with H ‖ c. Inset: The temperature dependence of dM
dH at

H = H0, which corresponds to the minimum within the 1
9 plateau region. The unit of dM

dH is 10−3�B/Cu2+/T.
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of dM
dH at H = H0 is plotted against T in the Inset of Fig. 1C,

showing a quasi-linear behavior as T → 0, contrasting sharply
with the fully gapped behavior observed at the 1

3 plateau in other
antiferromagnetic systems which can be understood in terms
of magnon excitations (45, 46). The potential origin of this
unconventional 1

9 plateau will be explained in Discussion.
The torque magnetometry results confirm the 1

9 plateau and
reveal more detail due to the finer resolution. As shown in
the Inset of Fig. 2A, the torque magnetometry setup measures
the torque due to the crystal in the direction perpendicular
to the M − H plane as � = �0VM × H = �0VMtH , with
V the sample volume and Mt the magnetization component
perpendicular to H . In other words, instead of detecting
the overall magnetization, torque magnetometry picks up the
anisotropic response, either due to a higher order H -dependence
of M or off-diagonal terms of the magnetic susceptibility tensor.
The angular dependence of � measured in YCOB sample S1 is
shown in Fig. 2A, where � is the angle between EH and ĉ. First,
the bump observed in the M −H curve of Sample M1 and M2
at �0H ≈ 18 T also occurs in �. More surprisingly, a series of
dips and peaks are observed at H > 20 T, which are clearly
seen in the derivative of torque across most angles, as shown in
Fig. 2B. Taking second derivatives of � Fig. 2C with respect to
H effectively removes any quadratic background, allowing the
oscillatory pattern to be further clarified without creating new
oscillations.

To further investigate these unusual oscillations, the
T -dependence of �, the resulting Mt , the first derivate of torque
d�
dH at � = −32.6◦ are plotted in Fig. 3A. Similar data for
two other values of � are plotted in SI Appendix, Fig. S6.
The magnetic oscillations above 20 T are rapidly suppressed
with increasing temperature, becoming unobservable above 3 K.

In Fig. 3B, the second derivative of the torque is plotted to
offer a clearer representation of the magnetic oscillations. The
oscillations are approximately evenly spaced in H , in contrast
to the 1/H periodicity of magnetic quantum oscillations in
metals. As can be seen in Fig. 3B, as T increases, the oscillation
amplitude shrinks while the period stays the same. Fig. 3C shows
the average amplitude of the d�

dH oscillations, after background
subtraction in the range [24 T, 35.7 T], obtained using Fast
Fourier Transformation (FFT—see SI Appendix, section S5),
and plotted as a function of temperature T . The result can
be fitted with the Lifshitz–Kosevich (LK) formula, which gives

the T -dependence of amplitudes, i.e., �M ∝
aT

sinh(aT )
, for

quantum oscillations due to fermions with mass m∗ (47). Using
a = 2�2

eℏ
m∗

�0H cos(�) , the resulting m∗/me = 4 is similar to the
values m∗/me = 5.2 found for another angle (SI Appendix, Fig.
S6). Although the data points in Fig. 3C can also be fitted with
other forms, such as a Gaussian distribution, we opted for the
LK fit because it is based on known physics and produces a mass
that is consistent with that extracted from an entirely different
measurement based on the Dirac spinon model discussed later.

To confirm the observation of the oscillations, 4 additional
YCOB crystals were measured in 3 different high-field magnets,
with H up to 41 or 45 T in DC magnetic fields and up to 60
T in a pulsed magnet. SI Appendix, Table S1 summarizes the
limits of the samples we tested and whether the observation was
confirmed. SI Appendix, section S6 and Fig. S10 present a direct
comparison of the torque signals. Additionally, we conducted a
control experiment by intentionally doping Cl at the Br site (31).
The control sample retains the same structure and the kagome
lattice formed by Cu, yet shows neither the 1

9 plateau nor the
magnetic oscillations (SI Appendix, Fig. S9).

A B C

Fig. 2. Oscillations in magnetic torque. (A) Raw magnetic torque � data, (B) d�/dH, and (C) d�2/dH2 versus magnetic field H at T = 0.4 K at different angles of
YCOB sample S1, measured with a piezo-resistive cantilever. � is defined by the angle between EH and ĉ. The magnetic torque was measured using a piezoresistive
cantilever [setup shown in the (A) Inset] in a resistive magnet up to 41 T.

PNAS 2025 Vol. 122 No. 5 e2421390122 https://doi.org/10.1073/pnas.2421390122 3 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
A

S 
IN

ST
IT

U
T

E
 O

F 
PH

Y
SI

C
S 

on
 F

eb
ru

ar
y 

11
, 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

15
9.

22
6.

35
.4

4.

https://www.pnas.org/lookup/doi/10.1073/pnas.2421390122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2421390122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2421390122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2421390122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2421390122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2421390122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2421390122#supplementary-materials


A B C

Fig. 3. Temperature dependence of the magnetic oscillations. (A) Temperature dependence of magnetic torque � (Top panel, Left), d�/dH (Bottom panel), and
(B) d2�/dH2 of YCOB sample S1 as a function of applied magnetic field up to 41 T at � = −32.6◦. The transverse magnetization Mt = �/�0H at T = 0.4 K is shown
in the Top panel of (A) to compare with the magnetization data. Oscillations are observed in magnetic field above the 1

9 plateau at B0 ≈ 20 T. The amplitude
of the oscillation smears out as the temperature rises. (C) The normalized FFT amplitude of the d�/dH oscillatory patterns after background subtraction (SI
Appendix, Fig. S5B). The background subtraction method is shown in SI Appendix, Fig. S5A. The solid curve shows the LK fitting, and the fitted average effective
mass m̄∗ is 4 me. Inset: The FFT analysis (SI Appendix, section S5) within FFT window [24 T, 35.7 T].

Discussion

We first summarize the experimental observations. The measure-
ments of magnetization and magnetic torque both reveal the 1

9
plateau in H along both c-axis and the ab-plane. The magnetic
torque measurement further reveals many oscillations above the
1
9 field, whose positions are aligned consistently in the first
derivative d�

dH and the second derivative d2�
dH2 . These oscillations

are roughly evenly spaced in H . Furthermore, the oscillation
positions shift systematically as the H -field is rotated from the
c-axis to the ab-plane. As T increases, the oscillation positions
stay the same, and their amplitude shrinks. These observations
call for interpretation.

We begin with a discussion of the 1/9 plateau. The dM
dH curve

shown in Fig. 1C is V-shaped and shows a linear T dependence
at the dip down to our lowest temperature of 0.4 K. This suggests
that gapless excitations exist at the plateau. In contrast, the 1/9
plateau reported in ref 40 is found to saturate at low temperature
and has been interpreted as forming a spin gap below 1.6 K. Two
possible gapped scenarios, a Z3 spin liquid state (36) and valence
bond crystal (42, 43) have been proposed to explain the emergent
gap. Possible explanations for these differing observations may
include sample variations, as discussed in detail in ref. 31, and
the temperature resolution of the magnetization measurements
performed in the high field. Further experiments are needed to
clarify this discrepancy.

Next, to understand the origin of magnetic oscillations, we
need to rule out extrinsic effects such as metallic impurity
islands inside this 3-eV gapped insulating sample. As shown
in SI Appendix, Figs. S8 and S10, five different samples grown
in separate batches have been measured in two DC magnets
and one pulsed magnet to confirm the reproducibility of the
observations. Additionally, an impurity metallic phase would
produce 1/H periodic magnetic oscillations, a common feature
in metals, which is contrary to the quasi-H -periodic oscillation
pattern shown in Fig. 3B.

Therefore, an explanation that is intrinsic to the system is
needed. In the following, we review examples in the literature
where structures as a function of magnetic field have been
seen in magnetization data and interpreted as a series of phase
transitions. We will see that these data and their interpretation
are quite different from our data in their temperature and angle
dependences. Next, we will discuss an interpretation based on
the Dirac spinon model. We will show that a version of this
model produces a simple formula (Eqs. 3 and 4) which accounts
for the complex temperature and angle dependence with a set
of internally consistent parameters. Of course, this does not
constitute proof, but at the very least, the model allows us to
organize the data in a systematic way.

Magnetic Phase Transitions. We note that recently oscillatory
behavior in the thermal conductivity has been reported in the spin
liquid candidate�-RuCl3 and interpreted as quantum oscillations
(48). This interpretation has been challenged and alternative
proposals involving a series of magnetic phase transitions have
been made (49–51). We would like to point out that there is an
important difference between these oscillations and our observa-
tions. In �−RuCl3 the oscillations depend on the components
of the magnetic field that are in-plane, whereas our observations
are sensitive to the out-of-plane field as in conventional quantum
oscillations while showing additional complex variations with
the tilt angle from the c-axis. Nevertheless, this debate inspired
us to consider an alternative explanation based on assuming a
series of magnetic transitions. Indeed, some kagome magnet
systems are known to exhibit multiple plateau transitions, as
observed in kagome insulators (37, 52) and kagome metals
(53). In these materials, the lattice might be weakly distorted
by the Zeeman energy of the magnetic field, leading to different
superlattice phases of spins and resulting in classical spin up-
up-down (UUD) plateaus. Experimentally, these plateaus are
directly revealed in the overall magnetization. As T increases,
these plateau transition fields usually shift, reflecting the delicate

4 of 9 https://doi.org/10.1073/pnas.2421390122 pnas.org
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balance between the lattice distortion and thermal activation
(53). Similarly, triangular lattice quantum magnet insulators
may exhibit a dominant UUD plateau, with additional states
emerging in different fields (45, 54). These plateau states
are generally observed through magnetization measurements.
Torque measurements on these quantum magnets (55, 56)
resolve the transition fields marking the beginning and end
of these plateau states. The angular dependence typically does
not show significant shifts in the transition field due to the
isotropic nature of the Zeeman energy, with any shifts arising
from the weak anisotropy of the g-factor. On the other hand, the
peaks generally shift with increasing temperature, and sometimes
neighboring peaks merge (55).

Therefore, the first possible scenario is that our observed
magnetic oscillations originate from multiple plateau states,
similar to those seen in other kagome magnets. In this case,
one would associate each oscillation peak (or valley) with a
phase transition. We would expect sharp features in the dM

dH
as one crosses a phase boundary, as is seen in Cs2CuCl4 (57),
or a more “rounded” transition feature in dM

dH , as in Cs2CuBr4
(58). Our data do not show these spikes and remain sinusoidal
down to the lowest temperature. Our peak positions do not
show any T dependence as seen in the experiments on other
systems. Furthermore, since ordered phases live between the
phase boundaries, one expects to observe typical phase transition
signatures in the magnetization as the temperature reaches the
critical temperature, with power law exponents. This is seen
in Cs2CuCl4 (57). We do not see any evidence of such phase
transitions. However, it should be noted that the possibility that
the sharp features are broadened by disorder in the exchange
constant which is intrinsic to YCOB (23) cannot be fully ruled
out.

Finally, an important shortcoming of this scenario is that
it fails to explain the systematic angular dependence of the
many observed oscillations. One would need to make ad hoc
assumptions about how the phase boundaries shift with the
magnetic field.

Dirac Spinon Model. Below we describe a phenomenological
fermionic model, sketched in Fig. 4, which can explain the 1

9
magnetization plateau, and its temperature dependence, plus

A B

Fig. 4. Dirac spinon model. (A) A schematic band structure for bands 4 to 7
out of 9 bands taken along a line in k space that cuts through a Dirac node
between bands 5 and 6. The chemical potentials of up and down spin near
the 1

9 plateau are also plotted, showing the pinning of the up spin chemical
potential forB > B0. (B) The sketch of one Dirac node aroundB0.After applying
the magnetic field, the chemical potential � of one spin will shift upward due
to the Zeeman effect. The gauge field of the spinors seen is b = �Bcos�,
where � is a coupling constant.

features of the magnetization oscillations and their temperature
dependence that we have identified so far.

As phenomenology, we do not attempt to start with a
microscopic model, but it should be mentioned that YCOB is
believed to have substantial randomness in the exchange coupling
which is related to the random replacement of one of the Br sites
off the kagome plane by OH (23). This replacement distorts the
Cu–OH–Cu bonds, leading to an alternation of the exchange
J around the hexagon. This bond alternation is ordered in Y-
kapellasite (30), leading to a tripling of the inplane unit cell
and a large reduction in the ordering temperature. In YCOB
these distorted hexagons are randomly distributed and depending
on their fraction (31) can totally suppress AF order. It appears
that this kind of correlated disorder plays an important role in
countering the DM term and stabilizing a spin liquid ground
state for zero or small magnetic fields. The precise magnitude
and the effect of this correlated disorder is not well known. In
ref. 23 a variation of J by as much as 70% has been proposed.
However, this number is based on fitting a hump in the magnetic
susceptibility data, and its reliability is in question because it was
shown in ref. 31 that the hump is insensitive to the fraction of
hexagons and may have a different origin. We note that neutron
scattering at B = 0 found peaks which are narrow in momentum
space that disperse rapidly (32), which suggests that randomness
may not be playing a dominant role. Furthermore, in the presence
of a large magnetic field near the 1/9 plateau, the Zeeman energy
is large and the effect of disorder may be less important. Within
our picture, randomness can lead to a broadening of the fermion
bands. Given the level of uncertainty, we do not take disorder
broadening into account in our phenomenological model.

We begin by addressing the V -shaped � and its T dependence
as shown in Fig. 1C. In the case of the 1

3 magnetization plateau,
a V -shaped � has previously been proposed to be indicative of
an incompletely developed plateau (59), but our temperature
dependence in Fig. 1C does not support this interpretation
because in that case � typically saturates at low temperatures.
This is in contrast with the approximate linear T behavior at the
dip minimum seen in Fig. 1 C, Inset. (See SI Appendix, Fig. S2 for
a more detailed comparison.) The V -shaped � and the gapless
behavior motivate us to consider a fermionic model. In a model
where the low energy excitations are fermions occupying energy
bands, � is proportional to the fermion density of states D(E) at
the Fermi level. Consequently, the V -shaped � ∝ |B − B0| and
its linear T dependence shown in Fig. 1 C, Inset suggests that
D(E) ∝ |E |. (Since � is small, B ≈ �0H ; we define B0 = �0H0
and will use B and �0H interchangeably.) This suggests the V-
shape could originate from Dirac fermions. Furthermore, the
temperature dependence of � can be fitted by a Fermi–Dirac
based thermal broadening model, as shown in SI Appendix,
section S1 and Figs. S2B and S4, which is another evidence
for the fermionic picture.

Regardless of their origin, if the excitations are fermionic,
what must the band structure look like? In order to explain the
1
9 plateau, there must be a gap or a Dirac node in the fermion
band so that the down (up) spin bands hold 5 (4) fermions.
This requires 9 bands, which can come only from a tripling of
the unit cell. This is accomplished either by breaking translation
symmetry, or (without doing that) by imposing 2�/3 flux per
unit cell. We note that the Gutzwiller projection of the latter state
is precisely the Z3 spin liquid state found in ref. 44. In either
case, we sketch the schematic band structure of the fourth to sixth
bands in Fig. 4A (For simplicity, we assume the band dispersion is
the same for up and down spin. Since the result depends only on
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the density of states near the Fermi levels, the result remains the
same if the bands are spin-dependent.) A V -shaped � suggests a
linear density of states. In order to explain the V -shaped � , we
assume a Dirac node with velocity vD between bands 5 and 6. A
small gap at the Dirac node will not change our analysis. Bands
4 and 5 may be separated by a gap or may overlap. We assume
the latter for reasons that will become clear later.

At field B = B0, the down spin chemical potential �↓ is at the
Dirac point while the up spin chemical potential �↑ is between
bands 4 and 5, as shown in Fig. 4A. Upon increasing B > B0,
�↓ moves up while �↑ moves down, and their difference is given
by the Zeeman splitting g�BB. The differential susceptibility
� = dM

dH is given by (SI Appendix, section S1 and Eq. S11)

� ∝ ((D(�↑)−1 + D(�↓))−1)−1, [1]

where D(E) is the density of states at energy E . Note that instead
of adding the density of states at the up and down spin chemical
potentials, we add their inverse. Hence, � is dominated by the
smaller of the two. To understand this rather counterintuitive
result, let us consider the situation shown in Fig. 4A where �↓
is near the Dirac node and has a much smaller density of states
compared with �↑ which lies in the middle of bands 4 and 5. In
order to fix the total fermion density, �↑ will be nearly pinned
while �↓ moves up at the rate of the full Zeeman splitting g�BB.
The differential susceptibility dM/dH then comes mainly from
the movement of �↓ and is sensitive to D(�↓), in agreement
with Eq. 1. We parameterize this movement by �↓ = (g ′/2)�B,
where g ′ ≈ 2g. It is satisfying that the doubling of the g-factor
that was needed to fit the thermal smearing of the V -shaped �
comes out naturally, as discussed in SI Appendix, section S1. If
there were a gap between bands 4 and 5, � would remain zero as
long as �↑ is in this gap, giving rise to a U -shaped � , which does
not agree with the data.

The above discussion shows that the susceptibility data alone
already place considerable constraints on the nature of the
fermion bands. Can the same band structure explain the quantum
oscillations? Owing to the large charge gap, the fermions must
be charge neutral, leading us to interpret the fermions as
fractionalized spinons that are necessarily coupled to an emergent
gauge field (9, 10). Recall that conventional two-dimensional
(2D) metals exhibit magnetization oscillation due to Landau
quantization:

M(B) ∝ −sin
(

AFS�0

2�B cos(�)
− '

)
, [2]

where AFS is the Fermi surface area and �0 = h/e.
The application of this equation to our problem requires

several modifications. First, for B > B0 a Fermi surface is
formed in the down spin band with an area AFS = �k2

F , where
kF = g ′�B

2ℏvD (B − B0). Second, spinons with a Fermi surface are
coupled to a U(1) gauge field, which is the 2D analog of the
electromagnetic field in our world (9–11). Because it is 2D, the
gauge magnetic field b is always perpendicular to the plane and
produces Landau levels in the spinon spectrum. It is useful to
introduce the parameter � = b/(B cos(�)) to characterize the
relative strength of the gauge field and B. Then we can simply
replace B in the denominator of Eq. 2 by |�|B. The origin of b
and its relation to the external field B will be discussed later.

Putting everything together, for kT << �↓ the oscillatory part
of the torque per area L2 is given by (SI Appendix, section S3)

�
BL2 = −sin�C0(B−B0)

aT
sinh aT

sin(2�
(B − B0)2

B · ΔB
−'), [3]

where C0 = |�| e
�2ℏ g

′�B and

ΔB = 2eℏ
|�|v2

D
((g ′/2)�B)2 cos�. [4]

It is important to note thatB plays a dual role. Due to the Zeeman
effect, it gives rise to a Fermi surface for the down spin band,
leading to the (B − B0)2 factor inside the sine in Eq. 3. This B
dependence is isotropic apart from the small g factor anisotropy.
On the other hand, B also produces a finite gauge field b, which
depends on the component of the B-field perpendicular to the
plane. This gives rise to quite complex behavior as a function of
B-field and its angle �. As we will see, a single equation (Eq. 3)
captures the complexity of the data as well as their temperature
dependence.

Next, we compare the experimental results with predic-
tions from the Dirac spinon model. Fig. 5A presents the
�−dependence of the magnetic oscillations, and the background
subtraction method is given in SI Appendix, Fig. S5A. The
roughly even spacing of the magnetic oscillations persists over a
wide range of �. Moreover, as � changes, the oscillation peaks and
dips gradually shift, and the intervals between them progressively
decrease. This suggests an orbital origin of the oscillations.
Together with the Lifshitz–Kosevich temperature dependence,
we are led to attempt a Landau Level indexing as a function of
B based on Eq. 3 (See SI Appendix, Eq. S32 for the Landau
Level indexing). The result is shown in Fig. 5B for two angles,
using the data from Fig. 5A (more plots for 12 angles are shown
in SI Appendix, Fig. S7). At B much larger than B0 ≈ 20 T,
the indexing plot is quite linear, in agreement with the above-
mentioned rough B-periodic pattern. However, as B gets closer
to B0, the curves become nonlinear. The nonlinear dependence
of the Landau-Level index as a function of 1/B is also displayed
in SI Appendix, Fig. S5D; such behavior contrasts sharply with
that of conventional quantum oscillations in metals.

Fig. 5C displays results from conducting Landau index fitting
for all the measured tilt angles using SI Appendix, Eqs. S32
and S34. The procedure to obtain ΔB and the corresponding
uncertainty are discussed in SI Appendix, section S4. The obtained
ΔB values from d�

dH (red dots) and d2�
dH

2
(blue dots) are consistent

with each other. Notably, ΔB shows a large change which follows
closely the cos(�) dependence predicted by Eq. 4. This is a strong
indication that the oscillations depend on the c-component of
the magnetic field and that they have an orbital origin.

We have fitted the temperature-dependent data using the
standard 2D LK form for a parabolic band with mass m∗. The
Dirac spectrum requires a different expression for a (60, 61).
However, it can be cast in terms of m∗/me with the following
relation:

m∗

me
=

(g ′/2)�B(B − B0)
|�|v2

Dme
. [5]

Note that m∗
me

is independent of the angle � and proportional to
B − B0. In Fig. 3C we find an average value of m∗

me
≈ 4. The

prediction that m∗ increases with increasing B as B−B0 is also in
rough agreement with the LK fit of the amplitude at fixedB shown
in SI Appendix, Fig. S5C . We note that Eqs. 4 and 5, depend on
a single unknown parameter |�|v2

D. Using the measured value of
ΔB, We can use Eq. 4 to extract the product

√
|�|vD. Taking
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A B

C

Fig. 5. Angular dependence of the magnetic oscillations. (A) The oscillations in d�/dH at different angles. The oscillation component was obtained after
subtraction of a Loess-smoothed background. The background subtraction method is shown in SI Appendix, Fig. S5A. “×3” means the amplitudes are multiplied
by 3 for clarity. (B) Landau index plot of the oscillations at � = −32.6◦ and 84.6◦ in (A). maximum and minimum of the oscillations are taken to be integer and
half-integer values n and n+ 1/2. Solid curves show the fitting results of the function n = (B− B0)2/(ΔB · B)− ('+ �)/2� based on SI Appendix, Eq. S32. (C) The
period of oscillation ΔB versus angle �. ΔB was obtained from fitting of the Landau index plots of both d�/dH (red dots) and d2�/dH2 (blue dots) at different
angles. The procedure is described in SI Appendix, section S4 and data for 12 angles are shown in SI Appendix, Fig. S7. Following Eq. 4 a cosine fit for ΔB versus �
is shown in the black curve. Inset: The parameter B0 versus angle � from the fitting of d2�/dH2 data in SI Appendix, Fig. S7.

g ′ = 2g ≈ 4 we find
√
|�|vD ≈ 39 meV·Å≈ 5.89 × 103 m/s.

Plugging this into Eq. 5 and using B − B0 = 10 T, we find
m∗/m = 5.78, in reasonable agreement with the value 4 from
the LK fit.

Since m∗ is extracted from the temperature dependence and
ΔB from the period, the agreement of the value of m∗ extracted
from two independently measured quantities serves as a stringent
test of the model of fermions with Landau level quantization; its
validation provides key support for this picture.

Origin of the Gauge Magnetic Field

Now, we address a key question: In the spinon model, what is
the origin of the gauge magnetic field b, and how is it related to
the applied field? The literature has discussed two possibilities.
This discussion is quite general and applies equally well to spinon
with any dispersion, whether it is Dirac or not.

1. The spinon–chargon mechanism. Instead of a spin Hamil-
tonian, we go back to the Hubbard model with finite
onsite repulsion U and hopping t, which includes charge
fluctuations described by a gapped boson called chargon (62).
Even though the spinon is charge neutral, its current is
accompanied by a backflow of orbital chargon current, which
couples to the external B field. In this way, b is proportional to
the c-component of the magnetic field B cos(�) (SI Appendix,
section S9.) A physical way to view this effect in spin language

was given by Motrunich for a triangular lattice (11). He
showed that there is a linear coupling between the physical
magnetic flux through a triangle on-site i, j, k and the scalar
chirality C = 〈ESi · (ESj × ESk)〉. Wen, Wilczek, and Zee (63)
showed that a spinon hopping around the triangle picks
up a Berry phase given by C , which is interpreted as the
gauge flux through the triangle. Hence, b ∝ C ∝ B cos(�).
Near the Mott transition, the ratio � = b

B cos(�) is of order
unity (11) but is expected to diminish as the Mott band gap
increases.

2. The DM mechanism. In a recent paper (64), it is pointed out
the DM interaction, which is known to exist in these kagome
compounds due to the noncollinear Cu-O-Cu bond (Fig. 1A),
can give rise to an effective gauge field. The idea is that even in
the absence of spin ordering, the DM term causes a canting of
the nearest neighbor spins on sites i, j, so that 〈(ESj×ESk)〉 has an
average z component. In the presence of spin polarization 〈ESz〉
is also nonzero. As a result, the scalar chirality on three sites
that form a triangle C = 〈ESi · (ESj × ESk)〉 is finite and ∝ 〈ESz〉
after a mean-field factorization. Since b is proportional to the
chirality C (63), we write b = 〈ESz〉, where  is a constant.
Note that b is again proportional to cos(�). In ref. 64, it
was shown that this mechanism generates a gauge magnetic
field which is equivalent to 120 T in a direction opposed to
the external B, hence � ≈ −4. Note that this description
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deals only with spins and remains valid in a large band gap
insulator. Its origin is spin–orbit coupling, which makes the
orbital nature of the effect physically more transparent.

In the spinon–chargon mechanism � is a constant but in
the DM mechanism, |�| = 〈|ES|〉/B and can have some B
dependence if |〈ES〉| is not linear in B, as is the case near the
1
9 plateau. However, this dependence is less than 12% in the
relevant B range between 20 T and 40 T, as shown in the Inset
of SI Appendix, Fig. S11A. SI Appendix, Fig. S11B shows the
data fitted using the DM mechanism; the fit quality and the
resulting parameters are similar to those from the spinon–chargon
mechanism. Below, we will continue our discussion assuming
a constant �. Recall that we use Eq. 4 to extract

√
|�|vD ≈

39 meV·Å. The velocity itself can be extracted from the slope of
� versus B, yielding the average of vD ≈ 29.3

√
M↓/9 meV·Å,

where M↓ is the number of Dirac nodes in the original Brillouin
zone which is multiple of 3 due to unit cell tripling (SI Appendix,
section S8). In SI Appendix, section S1, we use the linear T
term in Fig. 1c Inset to extract a very similar value of vD ≈

34.1
√
M↓/9 meV·Å. We find that |�| is ≈ 1.33 and 2.3 if M↓

is 9 or 3 respectively. In the DM mechanism, it is estimated that
|�| ≈ 4 (64) while in the spinon–chargon mechanism, � ≈ t/U ,
which would be somewhat less than unity (SI Appendix, section
S9). Thus our analysis tends to favor the DM mechanism.

Summary and Conclusions

In summary, we report the identification of a 1
9 magnetization

plateau in the Mott insulator YCOB under an intense magnetic
field. Right above this field, magnetic oscillations appear in the
magnetic torque of this robust insulator with a charge gap of 3
eV. The data are well reproduced in several samples (SI Appendix,
Fig. S10, detailed discussion in SI Appendix, section S6). These
oscillations are characterized by the following key features. 1) The
oscillations are roughly periodic in large applied fields B. 2) Their
period, ΔB, follows a cos � dependence, suggesting that they
are caused by an orbital effect. 3) The T dependence of the
oscillation amplitude is consistent with the LK formula. Point 1)
and the fact that the oscillations are tied to the 1

9 plateau rule out
trivial explanations such as small metallic inclusions. Our data
do not resemble structures in the magnetization curves that have
been reported up to now, which have been interpreted based
on conventional pictures of multiple magnetic phase transitions.
In contrast, a phenomenological Dirac spinon model based on
the spin liquid picture was successful in organizing the complex
evolution of the oscillations as a function of field, angle, and
temperature.

Materials and Methods

Single crystals of YCu3(OH)6Br2[Br1−y(OH)y] (YCOB) were grown using the
hydrothermal method and ultrasonically cleaned in water before measurements
to remove the possible impurities as reported previously (22, 34). The deuterated
single crystals (YCOB-D, samples D1 and D2) were synthesized using the same
method with the corresponding deuterated starting materials and heavy water.
The OH content of these samples (S1, S2, S5, M1, and M2) is given by y = 0.67.
The Cl-doped single crystals (YCOB-58%Cl) were synthesized using the same
method as YCOB with 58% of the Br atoms replaced by Cl atoms, and y is
estimated to be 0.03. These values have been determined by single crystal X-ray
diffraction. YCOB samples S1, S2, S5, and M1 come from the same growth batch,

while sample M2 comes from another batch. The measurement conditions and
observations of all samples are listed in SI Appendix, Table S1.

Magnetization measurements at low field (<14 T) were carried out in a
Quantum Design physical property measurement system (PPMS Dynacool-14T)
using the Vibrating Sample Magnetometer option.

Magnetization measurements on YCOB M1 and M2 at high field were using
a compensated-coil spectrometer (33, 65) as drawn in the Inset of SI Appendix,
Fig. S2A which were performed at 65 T and 73 T pulsed field magnet at the
National High Magnetic Field Laboratory (NHMFL), Los Alamos. YCOB M1 was
stacked in a Vespel ampoule with c-axis aligned first and then restacked with
ab-plane aligned to apply the magnetic field in the ab-plane.

Magnetic torque measurements on YCOB S1, S2, and YCOB-D D1 were
using a piezo-resistive cantilever as drawn in Fig. 2A performed in 41 T Cell
6 (YCOB S1 and YCOB-D D1) and 45 T Hybrid (YCOB S2) DC field magnets in
NHMFL, Tallahassee. The unloaded cantilever setup signals are measured in
PPMS as shown in SI Appendix, Fig. S1A. The angles of YCOB S1 measured
in Cell 6 are adjusted by comparing the signal measured in PPMS under the
same condition as shown in SI Appendix, Fig. S1B. Note that the torque signals
have larger positive peaks, which is caused by the asymmetric response of the
piezo-cantilever to tension and compression. This has an effect on the quantum
oscillation amplitude as a function of angle but will not affect the analysis of the
period or the temperature dependence at fixed angle.

Magnetic torque measurements on YCOB S5 were using a piezo-resistive
cantilever performed in the 55 T Mid-Pulse magnet in NHMFL, Los Alamos.

Magnetic torque measurements on YCOB-D D2 were using a capacitive
cantilever performed in 41 T Cell 6 DC field magnets in NHMFL, Tallahassee.

The expression of Landau index fitting in Fig. 5B is SI Appendix, Eq. S32:
n = (B− B0)

2/(ΔB · B)− ('+ �)/2�, where B0 = 17.78 T,ΔB = 2.74
T, and ' = −1.4� for -32.6◦; while B0 = 22.40 T, ΔB = 0.50 T, and
' = −1.4� for 84.6◦.

The expression of cosine fitting in Fig. 5C is ΔB(�) = ΔB(0)cos�, and the
fitted result is ΔB(0) = 3.35 T.

Data, Materials, and Software Availability. The data generated in this study
have been deposited in the OSF repository (66). All other data are included in
the article and/or SI Appendix.
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