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Sr2CuTeO6 is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S ¼ 1=2
Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes
have predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a
study of Sr2CuTe1−xWxO6 using neutron diffraction and μSR techniques, showing that the Néel order
vanishes already at x ¼ 0.025� 0.005. We explain this extreme order suppression using a two-dimensional
Heisenberg spin model, demonstrating that a W-type impurity induces a deformation of the order parameter
that decays with distance as 1=r2 at temperature T ¼ 0. The associated logarithmic singularity leads to loss
of order for any x > 0. Order for small x > 0 and T > 0 is induced by weak interplane couplings. In the
nonmagnetic phase of Sr2CuTe1−xWxO6, the μSR relaxation rate exhibits quantum critical scaling with a
large dynamic exponent, z ≈ 3, consistent with a random-singlet state.
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A central theme in modern condensed matter physics is
the evolution of two-dimensional (2D) quantum antiferro-
magnets upon doping, as epitomized by the high-Tc
cuprates with charge carriers introduced into the CuO2

layers through off-layer doping [1,2]. In-plane static
impurities have also been studied, e.g., nonmagnetic Zn
substituting the spin S ¼ 1=2 carrying Cu ions [3–5]. In
general, impurities and random frustrated couplings in a
quantum magnet will eventually destroy any order and may
induce not yet fully understood disordered states, e.g.,
quantum spin glasses [6–8], spin fluids [9], valence-bond
glasses [10,11], and random-singlet (RS) states [12–24].
We here report μSR and neutron diffraction experiments

on Sr2CuTe1−xWxO6, which at x ¼ 0 realizes the 2D
S ¼ 1=2 antiferromagnetic (AFM) Heisenberg model with
predominantly first-neighbor interactions J1 generated

through superexchange via Te ions at the centers of the
plaquettes of 2 × 2 Cu ions [25,26]; see Fig. 1(a). At x ¼ 1,
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FIG. 1. 2D Heisenberg couplings JijSi · Sj in Sr2CuTe1−xWxO6.
The small black circles represent the S ¼ 1=2 carrying Cu ions,
while red and blue circles correspond to Te andW ions, respectively.
The dominant couplings mediated by Te in (a) andW in (b) are first-
neighbor J1 (solid red lines) and second-neighbor J2 (solid blue
lines), with J1 ≈ J2 ≈ 8 meV [30,33]. The couplings J01 and J02
indicated by the thin dashed lines are roughly 10% of the dominant
couplings. The first-neighbor coupling J001 on links between Te and
W ions, the gray dashed line in (c), is about 4% of J1 [33].
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the W ions instead mediate second-neighbor superex-
change in the affected plaquettes, Fig. 1(b), with J2 ≈ J1
[27–29]. An intriguing magnetically disordered state exists
within a window ½xc1; xc2�, with xc1 ≈ 0.1 and xc2 ≈ 0.6
estimated [30–32]. The ability to tune the disorder and
frustration by x offers unique opportunities to systemati-
cally study frustrated plaquette impurities of the J2 type
illustrated in Fig. 1(c) for small x and the subsequent
randomness-induced nonmagnetic state for larger x.
We here demonstrate destruction of the Néel order in

Sr2CuTe1−xWxO6 at xc1 ¼ 0.025� 0.005, far below the
previous estimate. We explain this dramatic order suppres-
sion using a classical Heisenberg model with random W
and Te ions. Here 2D Néel order at temperature T ¼ 0 is
destroyed even at infinitesimal x, due to a logarithmic
singularity caused by the single-impurity deformation of
the spin texture. Order at x > 0 and T > 0 is stabilized by
weak interlayer couplings. The columnar AFM state
extending from x ¼ 1 is much more robust, which also
can be explained by the classical model. In the non-
magnetic phase, the neutron diffraction measurements
reveal short-range Néel correlations and the μSR relaxation
rate exhibits quantum-critical scaling with dynamic expo-
nent z > 2, both consistent with recent predictions for the
2D RS state [22,23].
Experiments.—Polycrystalline Sr2CuTe1−xWxO6 samples

were synthesized as described previously [25–27,29]. The
experiments were carried out at J-PARC (μSR) and China
Advanced Research Reactor and Key Laboratory of Neutron
Physics and Institute of Nuclear Physics and Chemistry, China
(neutron diffraction); see also Supplemental Material [34].
Figure 2 shows our neutron diffraction results. Resolu-

tion limited magnetic peaks are observed at x ¼ 0 in
Fig. 2(a), consistent with Néel AFM order [25,30]. We
have also confirmed (Supplemental Material [34]) colum-
nar AFM order [31,32] for x ∈ [0.7, 1]. The W doped
sample with x ¼ 0.02, Fig. 2(a), is still ordered, with
resolution limited peaks (corresponding to a correlation
length > 180 Å ≈ 35 lattice spacings). The broader peaks
for x ≥ 0.03 in Figs. 2(b)–2(d) indicate the loss of long-
range order between x ¼ 0.02 and 0.03. At x ¼ 0.1 the
correlation length is still about 40 Å.
The μSR asymmetry AðtÞ was fitted to

AðtÞ ¼ A0 expð−λtÞGzðtÞ þ ABG; ð1Þ

where A0 is the initial asymmetry, λ the relaxation rate of
the muon spins, ABG the constant background, and GzðtÞ
the Kubo-Toyabe function [41]. The function AðtÞ cannot
actually describe the complete muon spectra of the mag-
netically ordered samples. It has already been shown that,
for columnar AFM ordered systems at x ¼ 1, 0.9, and 0.8,
the asymmetry initially drops very rapidly and oscillates
[28,32]. These features take place within 1 μs, beyond the
resolution of our measurements. Instead, Eq. (1) describes

the relaxation at longer times and A0 is close to the
asymmetry after the rapid initial drop. While the fits of
Eq. (1) are not perfect for the long-range ordered samples
(Supplemental Material [34]), the form describes the data
for x ¼ 0.05 and 0.1 very well, as shown in Figs. 3(a)
and 3(b).
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FIG. 2. Neutron diffraction results for (a) x ¼ 0 and 0.02,
(b) 0.03 and 0.05 (c) 0.1, and (d) 0.2. The peaks correspond to
wave vectors q ¼ ð1=2; 1=2; 0Þ and ð1=2; 1=2; 1Þ in the tetrago-
nal magnetic Brillouin zone, indicating dominant Néel AFM
order (x ¼ 0 and 0.02) and short-range correlations (x ≥ 0.03).
Data at T ¼ 40 K have been subtracted as background. The x ¼
0 and 0.03 values have been shifted vertically for clarity. The
curves are Gaussian fits and the green bars indicate the instru-
mental resolutions.
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FIG. 3. Time-dependent zero-field μSR spectra for (a) x ¼ 0.05
and (b) x ¼ 0.1 samples at different temperatures (the highest and
lowest indicated) along with fits to Eq. (1). (c) Temperature
dependent μSR asymmetry for x ¼ 0, 0.05, and 0.1, normalized
by the values at T = 30 K. (d) Temperature dependent relaxation
rate λ for x ¼ 0.05 and 0.1. The fitted lines correspond to critical
scaling, λ ≈ T−γ , with γ ¼ 0.35� 0.03 (x ¼ 0.05) and 0.42�
0.03 (x ¼ 0.1).
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The temperature dependent A0 is graphed in Fig. 3(c)
for x ¼ 0, 0.05, and 0.1. A sharp change is observed at
the previously known ordering temperature Tc at x ¼ 0
[25,26]. In contrast, in the x ¼ 0.05 and 0.1 samples A0

only decreases slowly below a characteristic temperature
T�. This behavior reflects gradual changes of the local
fields as a result of the onset of short-range magnetic
correlations but no ordering, which is consistent with the
neutron results in Figs. 2(b) and 2(c). It should be noted that
the value of A0 for x ¼ 0 at low temperatures is about 4=5
of that above Tc, while in the case of x ¼ 1 it is only 1=3
[27,34]. It is beyond the scope of this work to explain the
detailed form of A0; some additional analysis is provided in
the Supplemental Material [34].
Figure 3(d) shows the temperature dependence of the

relaxation rate λ for x ¼ 0.05 and 0.1. Power-law behaviors
reflect quantum-critical scaling in what is likely the RS
phase. As explained in the Supplemental Material [34],
standard scaling arguments [42,43] in combination with a
constraint imposed by the recently discovered 1=r2 form of
the spin correlations in the 2D RS phase [22–24] can be
used to derive the form λ ∝ T−γ with γ ¼ 1–2=z, where z is
the dynamic exponent. The values of γ extracted from the
fits in Fig. 3(d) correspond to z ¼ 3.0� 0.2 for x ¼ 0.05
and z ¼ 3.5� 0.3 for x ¼ 0.1. These values conform with
the expectations in the RS phase, where z equals 2 at the
Néel-RS transition and grows upon moving into the RS
phase [22]. It should be noted that the value of ABG in
Eq. (1) somewhat affects the determination of γ but we
consistently find power law behavior of λ and zðx ¼ 0.1Þ >
zðx ¼ 0.05Þ (further discussed in the Supplemental
Material [34]). We note that the low-temperature μSR
relaxation in quasi-2D spin glasses is very different [44].
Combining our μSR and neutron results with previous

works, the magnetic phase diagram of Sr2CuTe1−xWxO6 is
shown in Fig. 4(a). The columnar order at x ¼ 1 is robust
even for large Te substitution, which is indicative of only
minor effects of magnetic frustration and remaining
large connected ordered regions. The mean order parameter
may then be gradually reduced in a way similar to
diluted systems [45]. In contrast, introducing W in
the x ¼ 0 sample rapidly destroys the Néel order at
xc1 ¼ 0.025� 0.005. Short-range correlations with Néel
structure still remain at low temperatures even at x ¼ 0.2
based on our neutron-diffraction experiments and likely
persist throughout what we argue is the 2D RS phase.
Modeling.—The width of the Néel phase in Fig. 4(a) is

less than 1=3 of the previous estimates [30–32]. The Néel
phase at finite W doping being narrower than the columnar
phase at finite Te doping can be understood already at the
classical level with the dominant Heisenberg coupling
constants J1 and J2 in Fig. 1: Introducing a single Te
impurity in the J2-coupled columnar system, we simply lose
the J2 couplings in the affected plaquette and there is only
weak frustration from the much smaller J01 and J

00
1 couplings.

However, with a W impurity in the J1-dominated Néel state
the two new J2 bonds are completely frustrated. To
quantitatively understand the extremely narrow Néel phase
requires further insights.
Ideally, we would like to carry out calculations with the

full quantum mechanical Heisenberg Hamiltonian. Even
though progress has been made on some frustrated 2D
quantum magnets with density-matrix renormalization
group (DMRG) [46] and tensor-product [47] methods,
including Heisenberg systems with random couplings
[24], in practice calculations for frustrated systems are
still challenging and it would be hard to extract a reliable
phase diagram. However, we have found that already the
classical Heisenberg model can explain the extreme fra-
gility of the Néel state to W-plaquette impurities and also
gives an overall reasonable phase diagram.
The long-range Néel order at T ¼ 0 in the 2D

Heisenberg model with uniform exchange J1Si · Sj on
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FIG. 4. (a) Magnetic phase diagram of Sr2CuTe1−xWxO6. NAF
and CAF denote Néel and columnar AFM correlations, respec-
tively, either short-range (SR) or long-range (LR). The ordering
temperature Tc and characteristic short-range correlation
temperature T� were determined by μSR measurements, except
for T� of the x ¼ 0.2 sample, which was obtained (Supplemental
Material [34]) by neutron diffraction. (b) Transition temperatures
of the classical Heisenberg model of coupled layers, determined
using Monte Carlo simulations. In the notation of Fig. 1 the 2D
couplings are J1 ¼ J2 ¼ 1, J01 ¼ J02 ¼ 0.1, and J001 ¼ 0. Two
different interlayer couplings are used; J⊥ ¼ 10−2 and 10−3.
Curves are drawn through the data points as guides to the eye.
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all first neighbors ði; jÞ is destroyed by thermal fluctuations
at T > 0 [48,49]. In weakly coupled planes of classical or
quantum spins, Tc ∝ J1 ln−1ðJ1=J⊥Þ, where J⊥ is the
coupling between spins in adjacent planes [50,51]. Since
a quantum magnet with AFM order or a long correlation
length behaves in many respects as a “renormalized
classical” system [49], the initial effects of doping the x ¼
0 and x ¼ 1 system should be captured correctly by a
classical model, up to Oð1Þ factors.
In the notation of Fig. 1, we set the 2D couplings to

J1 ¼ J2 ¼ 1, J01 ¼ J02 ¼ 0.1, and J001 ¼ 0, with jSij ¼ 1.
For coupled planes we consider J⊥ ¼ 10−2 and 10−3. We
used standard Monte Carlo methods for frustrated
Heisenberg models [52,53], with Binder cumulant tech-
niques [54] for extracting Tc at fixed x, based on averages
over several hundred realizations of the random W and Te
plaquettes on systems with up to 72 × 72 × 18 spins. The
resulting infinite-size extrapolated phase boundaries are
shown in Fig. 4(b). When comparing with the experiments,
it should be noted that T ¼ 25 K corresponds roughly to
0.3 in units of J1 and that Tc in uniform coupled S ¼ 1=2
planes with J⊥ of order 10−2 is lower by about 50% than
our classical result at x ¼ 0 [51]. We expect quantum
fluctuations to shrink the ordered phases also in the x
direction, and the differences between the numerical and
experimental results for the columnar phase boundary
should also be due to quantum effects (and possibly weak
interactions beyond those included here).
As seen in Fig. 4(b), upon changing J⊥ from 10−2 to

10−3, Tc at x ¼ 0 is only slightly reduced, as expected on
account of the logarithmic form discussed above. For x > 0
the phase boundary drops more rapidly to zero for the
smaller J⊥, and the size of the Néel phase is substantially
smaller. A very narrow Néel phase with high sensitivity of
the T ¼ 0 transition point to J⊥ is not expected within a
simple picture of conventional local impurity suppression
of the order [45]. We therefore investigate the deformation
of the Néel order around a single impurity plaquette at
T ¼ 0, which we have done by minimizing the energy with
a combination of simulated annealing and energy conserv-
ing spin moves.
The deviation Δm of the local ordered moment from the

bulk value is graphed in Fig. 5 versus the distance r from
the impurity. The form Δm ∝ 1=r2 causes a logarithmic
divergence when integrated over r (but the total energy cost
of the deformation stays constant, with the energy density
decaying as 1=r4). This single-impurity response suggests
that any impurity fraction x > 0 destroys the long-range
order, and this is demonstrated explicitly in the
Supplemental Material [34]. A similar fragility of noncol-
linear bulk order in the presence of certain impurities was
previously pointed out [8], but the profound impact of the
plaquette impurity (which can be understood as a
composite of two dipoles; see the Supplemental Material
[34]) on the collinear Néel state had not been anticipated.

For the weakly coupled planes in Fig. 4(b), the Néel
order is stabilized for a range of x > 0 depending on J⊥=J1,
but we have not studied the functional form of xc1 versus
J⊥. The disorder should be irrelevant at the T > 0 phase
transitions according to the Harris criterion [55,56], and we
expect standard three-dimensional O(3) universality.
We do not have sufficient data for large systems to test
the critical exponents. In an S ¼ 1=2 system such as
Sr2CuTe1−xWxO6, quantum fluctuations should further
suppress the order and reduce xc1, and we expect the same
type of logarithmic singularity as in the classical case when
J⊥=J1 → 0, on account of the renormalized classical
picture of the quantum Néel state [49].
Discussion.—The extreme effect of the W impurities in

the Néel state was not captured by the density functional
calculations in Ref. [32], which suggested destabilization
of the Néel order for x ≈ 0.1–0.2 in Sr2CuTe1−xWxO6,
significantly above xc1 ≈ 0.025 found in our experiments.
The mechanism we have uncovered here relies on a
singular effect of frustrated plaquette impurities in two
dimensions, with weak 3D couplings pushing the transition
from x ¼ 0 to small x > 0.
Once the Néel order vanishes, from the classical per-

spective a spin glass phase is expected [8,57]. In the
presence of strong quantum fluctuations in S ¼ 1=2
systems, there is mounting evidence from model studies
that the spin glass can be supplanted by an RS state [8,19,
22–24]. A particular realization of the RS state amenable to
large-scale quantum Monte Carlo calculations exhibits
criticality with a dynamic exponent z ≥ 2 and dominant
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FIG. 5. Deformation of the order parameter of the classical
Heisenberg model with a W-type plaquette impurity as defined in
Fig. 1, with the same couplings as in Fig. 4. The deviation
Δm ¼ 1 − jSzi j, where the z direction is that of the bulk Néel
order, is shown vs the distance r from the impurity along the (1,0)
lattice direction for several system sizes. The line shows the form
1=r2. The inset shows the projection of the spins to the xy spin
plane, with the color coding corresponding to m ∈ ½0.49; 1�. The
magnitude of the xy component decays as 1=r from its maximal
value ≈0.87 closest to the impurity. The behaviors correspond to
an angular distortion ∝ 1=r.
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Néel-type spin correlations decaying with distance as 1=r2

at T ¼ 0 [22,23]. This form of the correlations was recently
confirmed in a frustrated random-bond system with DMRG
calculations [24], thus further supporting universal RS
behavior. The significant staggered correlations well past
the Néel phase in Sr2CuTe1−x WxO6, as revealed by our
neutron diffraction experiments at x ¼ 0.1 and 0.2, are thus
expected within the RS scenario. Previous results at
x ¼ 0.5 also showed remnants of Néel correlations [33].
We here further demonstrated quantum-critical scaling of
the μSR relaxation rate with varying z > 2, as recently
predicted in the 2D RS state [22,23].
It would be interesting to further test the proposed RS

scaling forms experimentally in Sr2CuTe1−xWxO6. A re-
analysis [22] of susceptibility data for x ≥ 0.2 [31] sup-
ported the predicted form χ ∝ T−γ with γ < 1. Detailed
inelastic netron scattering studies would be very useful, but
our attemps to grow large single-crystals have so far not
been successful. With polycrystalline samples, NMR
experiments may be able to further elucidate the nature
of the RS state and the Néel–RS transition. RS signatures
were previously reported in YbMgGaO4 [20] and
α-Ru1−xIrxCl3 [58], but in addition to random frustration
these materials have Dzyaloshinskii-Moriya interactions
and spin vacancies, respectively. Beyond its intrinsic
importance, the 2D RS state should also be a useful
benchmark for experiments on potential uniform spin
liquids [59,60], where it is often difficult [11,20,61,62]
to distinguish between impurity physics and theoretically
predicted properties of clean systems.
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