
Thermodynamic Evidence of Fermionic Behavior in the Vicinity
of One-Ninth Plateau in a Kagome Antiferromagnet

Guoxin Zheng ,1 Dechen Zhang,1 Yuan Zhu ,1 Kuan-Wen Chen,1 Aaron Chan,1 Kaila Jenkins ,1

Byungmin Kang,2 Zhenyuan Zeng,3,4 Aini Xu,3,4 D. Ratkovski ,5 Joanna Blawat,6

Alimamy F. Bangura ,5 John Singleton ,6 Patrick A. Lee,2 Shiliang Li ,3,4,7 and Lu Li 1,*

1Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China

4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
5National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive,

Tallahassee, Florida 32310-3706, USA
6National High Magnetic Field Laboratory, MS E536, Los Alamos National Laboratory,

Los Alamos, New Mexico 87545, USA
7Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China

(Received 8 September 2024; revised 17 December 2024; accepted 1 May 2025; published 30 May 2025)

The spin-1=2 kagome Heisenberg antiferromagnets are believed to host exotic quantum entangled states.
Recently, the reports of 1=9 magnetization plateau and magnetic oscillations in a kagome antiferromagnet
YCu3ðOHÞ6Br2½BrxðOHÞ1−x� (YCOB) have made this material a promising candidate for experimentally
realizing quantum spin liquid states. Here, we present measurements of the specific heat Cp in YCOB in
high magnetic fields (up to 41.5 T) down to 0.46 K, and the 1=9 plateau feature has been confirmed.
Moreover, the temperature dependence of Cp=T in the vicinity of 1=9 plateau region can be fitted by a
linear in T term which indicates the presence of a Dirac spectrum, together with a constant term, which
indicates a finite density of states contributed by other spinon Fermi surfaces. Surprisingly, the constant
term is highly anisotropic in the direction of the magnetic field. Additionally, we observe a double-peak
feature near 30 T above the 1=9 plateau which is another hallmark of fermionic excitations in the specific
heat. This combination of gapless behavior and the double-peak structure strongly suggests that the 1=9
plateau in YCOB is nontrivial and hosts fermionic quasiparticles.
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I. INTRODUCTION

Quantum spin liquids (QSLs) have played an essential
role in condensed matter physics since Anderson pro-
posed the resonating-valence-bond model in 1973 [1]. The
spin-1=2 kagome Heisenberg antiferromagnet (KHA)
exhibits a high degree of geometric frustration and is
one of the most promising candidates for hosting QSLs
[2–4]. Theoretically, the presence of QSL on the KHA has
been confirmed by density matrix renormalization group
simulations [5], but its precise ground state remains an open
question, with two main possibilities: the gapped Z2 spin
liquid [5–7] and the gapless U(1) Dirac spin liquid

(DSL) [8–11]. Beyond the ground state at zero field, more
exotic quantum entangled states can emerge under mag-
netic fields, such as the unconventional 1=9 magnetization
plateau, which might be described by a topological Z3

QSL [12] or a gapless valence-bond-crystal state [13],
though its nature remains elusive. A recent projected
Monte Carlo study supports a Z3 spin liquid scenario with
fermionic spinons [14].
Experimentally, the most extensively studied QSL candi-

date in the kagome system so far is herbertsmithite
½ZnCu3ðOHÞ6Cl2� [15,16]. The difficulty in determining its
ground state arises from the partial substitution of the Zn2þ
sites located between the two-dimensional (2D) kagome
planes byCu2þ ions, which causes the low-energy excitations
to be dominated by these orphan spins [17–19]. Recently, the
synthesis of theKHAYCu3ðOHÞ6Br2½BrxðOHÞ1−x� (YCOB)
has addressed the site mixing issue by introducing Y3þ ions
which have a different ionic size than Cu2þ [20]. The first
material, YCu3ðOHÞ6Cl3 had the ideal kagome structure [21]
butwas found to order at 15K [22]. It has been known that the
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presence of a small Dzyaloshinskii-Moriya (DM) term leads
to ordering [23], so this was not a complete surprise. The next
development is the replacement of Cl by Br and a partial
substitution of Br with OH as in YCOB, where no magnetic
transition is found down to 50mK [24].However, it should be
noted that the random substitution of Br by OH leads to a
distribution in the exchange constant J [25]. Apparently,
some kind of deviation from a uniform exchange constant is
needed to overcome the DM term and suppress ordering.
These developments make YCOB a compelling QSL
candidate [20,24,25], even though disorder in the exchange
coupling is now present.
YCOB received a lot of attention starting from the report

that Cp=T has a linear T term [24,25] which develops a
finite zero temperature extrapolation as a magnetic field is
applied [24]. This was taken to be a signature of a Dirac
spin liquid, where the low-energy excitations are fermionic
spinons obeying a 2D Dirac spectrum. This material has
been under intense study using a variety of techniques such
as nuclear magnetic resonance [26,27], nuclear quadrupole
resonance, and muon spin relaxation [28], neutron scatter-
ing [29], thermal conductivity [30], and magnetization [31],
as well as detailed sample characterization under different
alloying and growth conditions [32]. While some of these
data support the Dirac spin liquid picture, the interpretation
is not fully consistent. One point is that spin susceptibility
measurements find that dM=dH goes to a constant at low
temperatures, which is at variance with the prediction of
linear T behavior based on the Dirac spinon model.
Another puzzle is that thermal conductivity finds a very
small enhancement in magnetic fields up to 6 T, which
indicates that the spinon contribution is very small and the
mean free path of the spinons, if they exist, is very short,
perhaps due to disorder [30]. On the other hand, the
sharpness of the neutron scattering peak structure [29]
argues against strong disorder.
It should be added that, amid these uncertainties, what is

clear is that YCOB at low magnetic fields is not described
by the random singlet model, which has been successful in
describing the low T, H behavior of a wide array of “spin
liquid candidates” which do not order down to low
temperature, including herbertsmithite [33,34]. In this
picture, the exchange J between the orphan spins obeys
a power law distribution J−ν. At a given temperature, a
fraction T1−ν of the spins are free, leading to the prediction
that both Cp=T and dM=dH scale as T−ν, where ν is found
empirically to be between 0.3 and 0.5. Note that, for this
model to make sense, the distribution of J must be singular
for small J and ν must be positive. The predicted behavior
is very different from the behavior observed in Cp=T and
dM=dH as discussed earlier [25].
Against this backdrop of uncertainties, we embarked

on a study of YCOB under an intense magnetic field, with
the hope that the strong Zeeman energy may bring new
insight. Indeed, three independent groups discovered a

magnetization plateau at 1=3 and 1=9 [35–37]. As men-
tioned earlier, the 1=9 plateau was predicted by theory and
can signal a nontrivial new state. Furthermore, high-
resolution magnetic torque measurements found oscilla-
tions in the magnetization [35], reminiscent of quantum
oscillations in metals. This is highly unexpected in a 3 eV
band gap insulator. This observation was interpreted in
terms of fermionic spins with a Dirac spectrum [35]. The
novelty of these data and the lack of consensus on whether
the 1=9 plateau is gapped [37] or gapless [35] makes it
imperative to study the 1=9 plateau using other probes.
In this paper, we report the specific-heat (Cp) measure-

ments on single crystals of YCOB under magnetic fields
of up to μ0H ¼ 41.5 T, with temperatures down to
T ¼ 0.46 K. The 1=9 plateau phase previously observed
in magnetization is verified in the magnetic-field depend-
ence of the specific heat. We find a finite value for Cp=T in
the T → 0 limit, which provides direct evidence that the
system has gapless excitations. We also find a linear T term
in Cp=T which is consistent with Dirac spinon contribu-
tion. More importantly, we constructed a Wilson ratio (WD)
by combining the magnetic susceptibility and specific-heat
data at the 1=9 plateau for Dirac fermions. The resulting
value of 0.29 ≤ WD ≤ 1.14, which is close to unity,
provides significant support for the existence of Dirac
fermions within the 1=9 plateau phase. Moreover, we
observe a “double-peak” structure in Cp similar to what
was seen in graphite and interpreted as coming from
thermal broadening of a sharp fermionic state. This
provides additional important evidence of the fermionic
nature of the excitations. We emphasize that the main focus
of this paper is on the nature of the 1=9 plateau. We believe
the quantum state that characterizes this plateau is distinct
from the low-magnetic-field state. A peak in the specific
heat which separates the onset of the 1=9 plateau from the
low-field regime supports this notion. From this point of
view, the data reported in this paper do not shed additional
light on the nature of the low-field state, and we do not
discuss the low-field state further.

II. EXPERIMENT

For this study, single crystals of YCOB were grown
using the hydrothermal method as reported previously [24].
The magnetization measurements on YCOB sample M1
were performed using a compensated coil spectrometer
[38,39] in a 65 T pulsed field magnet at the National High
Magnetic Field Laboratory (NHMFL), Los Alamos. The
specific-heat measurements on YCOB sample H1 at
high fields were carried out using a membrane-based
nanocalorimeter [40] employing an ac steady-state method
[41] in the 41.5 T cell 6 dc field magnet at NHMFL,
Tallahassee. Unless otherwise specified, all specific-heat
measurements were performed on YCOB sample H1.
The specific-heat data presented for the YCOB H1 sample
in the main text have been processed to subtract the
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contribution from the addenda. The addenda subtraction
method is described in the Appendix. The specific-heat
measurements on YCOB sample H3 at 0 T in the inset in
Fig. 2 were conducted in a Quantum Design physical
property measurement system (PPMS) using the He-3
option.

III. RESULTS

A. One-ninth plateau in magnetization
and specific heat

The magnetic-field (H) dependence of magnetization M
and the corresponding derivative χM ≡ dM=dH for H k c
andH k ab at temperature T ¼ 0.6 K are shown in Fig. 1(a).
The experimental details and sample growth information are
given in Sec. II. The plateau region can be characterized by
thewidth of thevalley in χM, which spans from15.0 to 28.4 T
when H k c and from 19.1 to 27.3 T when H k ab. This
observation is consistent with the results reported in
Refs. [35–37]. The slightly larger 1=9 magnetization value
when H k c can be understood by the anisotropy of the g
factor [25]. To confirm the 1=9 plateau feature and shed light
on this unconventional state, we conducted specific-heat
measurements at high fields. The field dependence around
the 1=9 plateau region is shown in Fig. 1(b)with applied field

alongH k c andH k ab. The 1=9 plateau phase is visible as a
dip in specific heat within the same field range. The similar
behavior of the dM=dH andCp data in the 1=9 plateau phase
is expected in the fermionic spinon picture, as both are
directly related to the spinon density of states (DOS). We
note that, in the region (μ0H > 10 T, T < 2 K) which is
our focus in this paper, specific-heat contributions from
Schottky anomalies and phonons are negligible compared
to the intrinsic Cp from the kagome plane, as discussed
in the Appendix. Note that earlier heat capacity
measurements [24,32,42] suggest traces of a nuclear
Schottky anomaly for μ0H > 10 T; this may reflect
differences between earlier and later sample batches.
Zero-field specific-heat data up to 10 K are depicted in

the inset in Fig. 2. The broad hump around 2.5 K is similar
to what has been reported in Refs. [24,25,28,36]. As T
approaches zero, Cp=T shows linear behavior with a
vanishingly small intercept, as indicated by the black
dashed linear fit. Our Cp data are in good agreement with
the reports in Refs. [24,25].

B. Fermionic behavior at the center
of the one-ninth plateau

To investigate the properties of the 1=9 plateau phase, the
T dependence of Cp=T within the plateau regions below
5 K with field applied along the c axis and in the ab plane

FIG. 1. Magnetic-field dependence of magnetization, the cor-
responding derivative, and specific heat around 1=9 plateau
phase. (a) The thinner double lines represent the M versus H
data measured at 0.6 K with applied field along the c (blue) and
ab (orange) directions. The magnetic susceptibilities χM ≡
dM=dH are plotted as the thicker dots corresponding to the
vertical scale on the left side. The 1=9 magnetization plateau is
observed along the c axis between 15 and 28 T and in the ab
plane between 20 and 27 T. (b) The field dependence of specific
heat measured at 0.46 K with applied field along the c and ab
directions. The clear valleys centered around μ0H0 ¼ 21 T when
H k c confirmed the 1=9 plateau in magnetization.

FIG. 2. Specific-heat data providing evidence for the gapless
nature in the 1=9 plateau phase. The raw data of Cp=T versus T
are presented down to 0.46 K with μ0H ¼ 20 T along the c axis
(blue dots) and μ0H ¼ 24 T in the ab plane (orange dots). The
field values are chosen to represent the middle of the plateau after
taking into account the g-factor anisotropy. The black dashed
lines are the linear fittings Cp=T ¼ γ þ βT. Note that, while the
linear slopes are parallel, the finite intercept γ strongly depends
on the field direction. The inset plot depicts the temperature
dependence of specific heat of YCOB sample H3 at zero
magnetic field, and the black dashed line is a linear fit with
negligible intercept.
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are plotted in Fig. 2. We notice that the broad hump shown
at 0 T is significantly suppressed in the 1=9 plateau region,
and no phase transitions are detected at low T. This
contrasts with the sharp peak feature in specific heat
observed near the 1=3 magnetization plateau region
reported in some triangular lattices [43]. Moreover, as T
approaches zero, Cp=T shows a linear T behavior with a
finite intercept in both directions. The finite intercepts show
that the 1=9 plateau phase is gapless. The intercept shows a
surprisingly large anisotropy whenH is applied in different
directions, as already clearly seen in Fig. 1(b). The data can
be described by a linear fit:

Cp=T ¼ γ þ βT: ð1Þ

As shown by the black dashed lines in Fig. 2, it is clear
that the linear slopes are almost parallel, while the
intercept γ is different in the two directions. We obtained
γc ¼ 8.0ð5ÞmJ=K2=mol-Cu, βc ¼ 43.6ð5Þ mJ=K3=mol-Cu
for H k c and γab ¼ 38ð1Þ mJ=K2=mol-Cu, βab ¼
44ð1Þ mJ=K3=mol-Cu for H k ab. The fact that the β value
is isotropic in the 1=9 plateau phase, while γ is highly
anisotropic, suggests that the γ and β terms may have
different origins. Here, we remark that these data already
answer the first important question posted earlier of
whether the excitations are gapped or gapless in the 1=9
plateau. The finite γ, whatever its origin, is direct evidence
that the system is gapless. It is noteworthy that dM=dH also
shows a finite intercept at low temperatures [35–37].
Despite this, Ref. [37] claims that the system is gapped.
They base their argument on the existence of DM terms
which break the conservation of total spins. Presumably
they have in mind an analog of the Van Vleck term that
gives a constant dM=dH even in an insulator with spin-
orbit coupling. Our specific-heat data directly rule out this
possibility.
Now, we first focus on the β term and return to discuss

the γ term and its anisotropy later in the paper. In a 2D
Dirac free fermion, we define the theoretical value
β̃ ¼ Cp=T2 ¼ 18nDζð3Þπk3BAs=ð2πℏvDÞ2, where nD is
the degeneracy of Dirac nodes, As is the area of the 2D
system, and vD is the Dirac velocity [8]. Using
β ¼ 43.6 mJ=K3=mol-Cu, we can estimate vD=

ffiffiffi
n

p
D to

be 1.65× 103 m=s¼ 10.9 meV · Å. The same quantity was
estimated from the approximately linear slope in dM=dH
versus H in Ref. [35] to be ðg0=gÞ × 4.9 meV · Å, where g0
is the effective g factor which describes the movement of
the down-spin chemical potential in a magnetic field. In
Ref. [35], g0=gwas taken to be approximately 2, but there is
considerable uncertainty. Given these uncertainties and the
fact that there can be corrections to the free-fermion
formulas due to interaction effects, the agreement is
reasonable.
Yet another point of comparison is that the temperature

dependence of dM=dH at the center of 1=9 plateau was

found to be a constant plus a linear T term βχT [35]. The
theoretical expression for the linear T coefficient is given as
β̃χ ¼ lnð2Þðg0=2Þ2μ2BnD=πℏ2v2D. By fitting the data, a value
for vD=

ffiffiffiffiffiffi
nD

p
was found to be 1.72 × 103 m=s by taking

g0 ¼ 2g [35]. Using the theoretical expression for the T2

term in the specific heat given above, we can construct the
analog of the Wilson ratio for Fermi liquid to Dirac
fermions by comparing the ratio between the linear T term
in dM=dH and Cp=T to that of free fermions, which we
denote this as Dirac Wilson ratio:

WD ¼ βχ=β

β̃χ=β̃
; ð2Þ

where again the βχ is the T-linear coefficient of the
magnetic susceptibility near T ¼ 0, β is the T-quadratic
coefficient of the specific heat near T ¼ 0, and β̃ and β̃χ are
the theoretical expectations for the free Dirac fermions.
The advantage of the Dirac Wilson ratio is that param-

eters such as nD and vD are canceled. If the system is
described by free Dirac fermions, the Wilson ratio
WD ¼ 1. Because the temperature-dependent data for χ
in the ab plane are not available in Ref. [35], we
examine only the Dirac Wilson ratio along the c axis in
the following part. Using the expressions given above,
we find that β̃χ=β̃ ¼ 0.13ðg0=2Þ2μ2B=k2B. From the data,
we find βχ ¼ 0.63 × 10−3μB=T=K=Cu [35] and β ¼
43.6 mJ=K3=mol-Cu, so that βχ=β ¼ 0.18μ2B=k

2
B. Hence,

we find WD ¼ 1.38ð2=g0Þ2. If we take the conventional g
factor, g0 ¼ g ¼ 2.2 [25], then WD ¼ 1.14, which is very
close to unity. However, as we mentioned before, there
could be a correction to g0 near the Dirac node region, as
derived in Ref. [35], where g0 ≈ 2g, resulting in
WD ¼ 0.29. Given the uncertainty of the value of g0,
we consider g0 to be within the range 2g ≥ g0 ≥ g.
Consequently, WD should fall within the range
0.29 ≤ WD ≤ 1.14.
In addition to the Dirac Wilson ratio, we can also

estimate the conventional Wilson ratio for a spinon
Fermi surface, given the presence of a finite γ in Fig. 2.
The established Wilson ratio for a Fermi liquid is given by

RW ¼ π2k2B
3ðg0=2Þ2μ2B

χ0
γ
; ð3Þ

where χ0 is the magnetic susceptibility at zero temperature.
From the data in Ref. [35], we obtain χ0ð20 TÞ ¼ 1.8 ×
10−3μB=T=Cu and γð20 TÞ ¼ 8 mJ=K2=mol-Cu for a field
along the c axis. Using these values, we estimate theWilson
ratio for a spinon Fermi surface as RW ¼ 9.1ð2=g0Þ2. If we
adopt the same range 2g ≥ g0 ≥ g, then the resulting range
of RW should be within 1.88 ≤ RW ≤ 7.52.
For the Fermi surface case, the conventional Wilson ratio

is subject to corrections due to Landau Fermi liquid
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parameters in the presence of interaction [44]. These
corrections could lead to an enhanced Wilson ratio, as
observed in the heavy fermion metal CeFePO where
RW ¼ 5.5 [45]. Given the strong correlations in YCOB,
it is reasonable to expect a Wilson ratio greater than 1. Such
correction does not exist for Dirac fermions, because the
density of states vanishes at the chemical potential. Thus,
the deviation of the Dirac Wilson ratio from unity can
potentially be a difficulty for the Dirac spinon model. Here,
we point to an interesting escape route. In the presence of
nD Dirac nodes, if nD is large enough, the gauge field is
deconfined and has a linear dispersion like a photon. In 2D,
this gives a T2 contribution to the specific heat which
should be added to the fermion contribution. Therefore, the
Dirac Wilson ratio being unity is just an upper bound. We
consider the fact that the Dirac Wilson ratio is of the order
of but less than unity to be a significant support for the
Dirac fermion model.
In principle, the T2 dependence in Cp can be due to some

critical or Goldstone 2D bosonic mode with a linear
dispersion. It should be noted that, in this scenario,
dM=dH would generally not show a linear T dependence.
It may be gapped or follow some other exponent.
Therefore, one would need a separate explanation of
why dM=dH is gapless and has a linear T dependence
with a Dirac Wilson ratio close to unity.

C. Features of the specific-heat data over a broad
range of magnetic field and temperature

In this section, we take a step back and provide a broader
view of specific-heat data. We show the data taken over a
wide range of magnetic field (H k c and k ab) and temper-
ature. First, consider Fig. 3(a). The 1=9 plateau is seen as a
dip at H ¼ H0 ≈ 21 T as marked by the dashed blue line.
This dip gradually fills in with increasing T. For the lower
field, there is a broad peak centered at Hp ≈ 16 T, which
moves to the lower field with increasing temperature, as
marked by the dashed black line. In addition, there is
another broad peak centered at H� ≈ 29.5 T. Interestingly,
this peak splits as the temperature is raised, as marked by
the dashed orange and red lines. The interpretation of this
split peak is given later. Here, we mention that this peak is
unrelated to the quantum oscillations seen by the torque
measurement for field above 20 T [35]. There the effect is
very small, of the order of a few percent, which is beyond
the resolution of the specific-heat measurement. Also, the
peaks in the magnetization oscillations are not temperature
dependent and show very different dependence on field
orientation compared with H�.
Returning to the peak near Hp, it is marked by a dashed

black line as T is increased. Later, it is shown in Fig. 5 that
the position of the peak shifts as T2. We note that 16 T is
close to the onset of the 1=9 plateau in the magnetization as
shown in Fig. 1(a). A similar peak is seen forH k ab shown
in Fig. 3(b) which has a similar T2 dependence in its

position, except that now it starts at approximately 19 T,
which is where the plateau begins for this field orientation.
We are, thus, motivated to interpret this peak as marking the
onset of the 1=9 plateau phase as a quantum phase

FIG. 3. Raw data of Cp. (a) The field dependence of Cp at
different T with H applied along the c direction. The black
dashed line traces the location of a peak located at μ0Hp ¼ 16 T
at low T and its evolution with increasing T, the blue dashed line
marks the middle of 1=9 plateau region μ0H0 ¼ 21 T, and the
orange and red dashed lines are guides for tracking the shift of
two split peaks at μ0H� ¼ 29.5 T. (b) The field dependence of Cp

at different T with H applied in the ab plane. The inset provides
an enlarged view of the Cp data when T ¼ 0.87 K, highlighting
the presence of split peaks around 30 T forH k ab case, which are
marked by orange and red dots.
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transition. Generally speaking, this transition may be
broadened to a crossover by disorder in the exchange J,
and no true singularity is observed. The T2 dependence
may indicate a crossover temperature that scales as
jH −Hpj0.5. However, since the nature of the respective
quantum phases is not known, we do not pursue this point
further. We point out only that if this peak is indeed due to
critical fluctuations of some soft mode, it is bosonic in
nature and should not be interpreted in terms of fermionic
excitations. In fact, we see that its tail overlaps with
fermioniclike excitations in the plateau phase and compli-
cates its analysis.
To gain further insight, the low-temperature dependence

of Cp=T over separate ranges of magnetic fields (H k c) is
plotted in Figs. 4(a)–4(c). The data were taken from the
vertical line cut in Fig. 3(a) at a fixed field. A broad hump
around 2 K, as shown in Fig. 4(a) at 10 T, closely resembles
the hump observed at zero field in the inset in Fig. 2.
However, this hump rapidly diminishes as the field
approaches the 1=9 plateau phase and is absent at 16 T.
It is interesting to compare our 10 T data with the 9 T data
available in the literature. While they all show a linear T
dependence, our data show a very small intercept γ which
disagrees with a γ which was originally reported to be linear

in H [24]. However, a recent study [32] found that this γ
depends on sample preparation, and our data are very
similar to that shown in Fig. 6(f) in Ref. [32], on a sample
that is prepared in a similar way. We do not dwell further on
this point, because our present study focuses on the high
field regime near the 1=9 plateau, which may be separated
from the more sample-sensitive low-field regime by a
quantum critical point, as mentioned earlier.
To study the field evolution of the γ and β coefficients

inside the 1=9 plateau phase, we performed linear fits of the
temperature dependence of the specific-heat data based on
Eq. (1) in the range 0.46 ≤ T ≤ 0.77 K for fields between
[17, 25] T. The field dependence of γ and β is shown in
Fig. 4(d). We find that β is almost constant over this field
range, while γ is constant between 20 and 23 T but
increases for lower and higher fields. The low-field increase
is likely from the tail of the peak at Hp. As mentioned
earlier, the peak near 16 T may be a bosonic soft mode
marking an underlying quantum critical point. In that case,
the rise in γ for a field below 19 T, which includes the
contribution from the peak at Hp, should not be confused
with the γ that originates from a finite DOS in a fermion
model. Similarly, it is clear from Fig. 3(a) that the data for
H > 24 T are picking up contributions from the split peak,

FIG. 4. Field evolution of fermionic behavior in the vicinity of 1=9 plateau region. (a)–(c) T dependence of Cp=T for different fields
with H k c. Data are cut from Fig. 3 at fixed fields. (d) The field dependence of values of γ (red dots) and β (blue dots) from 17 to 25 T,
obtained from linear fits of Cp=T versus T data in (a)–(c) via Eq. (1) in the temperature range 0.46 ≤ T ≤ 0.77 K. (e) A sketch of the
spinon band structure around H0, which is based on a 2D Dirac spinon (gray bands) centered at the spin-down chemical potential
μ↓ðH0Þ ¼ E0 combined with a set of particlelike and holelike bands (orange bands) that cross the spin-up chemical potential μ↑ðH0Þ.
The spinon model is described in Sec. III D.
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especially as the temperature is raised. We see from
Fig. 4(c) that the linear T regime shrinks as H exceeds
25 T. This is why we began our analysis in Fig. 2 by
focusing on the field along c at 20 T. From the discussion in
this section, we believe the fit to Eq. (1) is reliable for the
field range between approximately 20–23 T but not outside
this range. We, therefore, conclude that, near the plateau
minimum, the specific heat is consistent with Dirac spinons
located at H0, plus some other contributions that give the
finite γ value.

D. Dirac spinon model

In this section, we show that the 2D phenomenological
model introduced in Ref. [35] to explain the 1=9 magneti-
zation plateau and oscillations is consistentwith our specific-
heat data. In this picture, in the middle of the plateau at field
H0, the spin-down chemical potential μ↓ crosses a 2D Dirac
spinon band, while the spin-up chemical potential μ↑ crosses
electronlike and holelike bands, forming a spinon semimetal
with total density zero. This is shown in Fig. 4(e). It is natural
to interpret the linear term in Cp=T as originating from the
linear DOS of the Dirac spectrum. On the other hand, the
finite γc ¼ 8 mJ=K2=mol-Cu around μ0H0 ¼ 21 T could be
attributed to the bands at μ↑. The reason for the large
anisotropy in γ is not well understood, but we return to
discuss this later. Putting this question aside, in the next
section, we show that the double-peak featureH� can also be
accommodated in the fermionic spinonmodel by including a
saddle point in the spinon DOS.

E. Double-peak structure

In this section, we discuss the origin of the double-peak
structure. We already mentioned the three kinds of peak or
valley features visible in Fig. 3. We tracked the locations of
these peaks and valleys and plotted them in Fig. 5. The first
feature is the crossover peak at μ0Hp ≈ 16 T between the
zero-field ground state and the 1=9 plateau phase. The T
evolution of the peak location is plotted in Fig. 5 as
black squares, which are well fitted by a power law
μ0H − μ0Hp ∝ T2, where μ0Hp ¼ 16.13ð7Þ T. As men-
tioned earlier, this interesting quadratic behavior may be
related to quantum criticality separating the low-field state
from the plateau state. Next is the 1=9 plateau valley
centered at μ0H0 ∼ 21 T, whose location has almost no T
dependence as indicated in Fig. 5 by blue stars. The next
feature is a broad peak seen at μ0H� ∼ 29.5 T in Fig. 3(a).
At first glance, this appears to be a symmetric counterpart
of the peak at Hp. However, the T dependence of the peak
at H� indicates that it may have a different origin. As T
increases, this peak splits into two peaks as tracked by the
orange and red dashed lines in Fig. 3(a). We note that for
H k ab a similar peak can be seen at H ≈ 30 T in Fig. 3(b).
A more subtle splitting can also be seen in the inset in
Fig. 3(b) at 0.87 K. At higher T, the split peak is too broad

to be resolved. On the other hand, the peak at H ≈ 19 T
shifts with temperature in the same way as the Hp peak for
H k c. Since both peaks align with the onset of the 1=9
magnetization plateau shown in Fig. 1(a), we interpret them
in a similar manner as marking the onset of a new
quantum state.
Taking the derivative of Cp makes the peak-splitting

effect sharper, as displayed in Fig. 6(a), also as orange and
red lines. For reasons mentioned earlier in Sec. III C, the
features above 25 T at low temperatures are not related to
the magnetization oscillations observed in Ref. [35]. Here,
we present an explanation in terms of the double-peak
splitting of a Van Hove singularity. The peak positions
aroundH0� in Fig. 6(a) are plotted in Fig. 6(b). These can be
described by two linear fits with the intercept falling in
the same field range. We note that the red hollow data
points in Figs. 5 and 6(b) are excluded from the fitting,
because they may be interfered with by another peak in
higher field ranges (>40 T). In Fig. 6(b), the linear fits are
carried out using the expression μ0H ¼ μ0H0� þ k0T. The
fitting results are μ0H0� ¼ 28.6ð3Þ T, k0 ¼ −2.9ð2Þ T=K
for orange data points and μ0H0� ¼ 28.7ð5Þ T, k0 ¼
3.1ð4Þ T=K for red data points. The overlapping intercepts
and linear T dependence of the peak locations are remi-
niscent of the double-peak structure observed in the
specific heat due to a narrow peak in the fermionic
DOS [46]. To provide an explanation of the double-peak
structure for fermionic excitations, we begin with the
expression for the specific heat:

Cpðμ; TÞ ¼
∂

∂T

Z
DDðEÞ · ðE − μÞ · fFDðE − μÞdE; ð4Þ

where fFDðE − μÞ ¼ 1=½expðE − μÞ=kBT þ 1� is the
Fermi-Dirac distribution function.

FIG. 5. Phase diagram of YCOB characterized by Cp. The data
points are the peak or valley locations taken from Fig. 3(a) with
the corresponding color codes. Solid lines are linear, while the
dashed line is quadratic in T.
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We set ðE − μÞ=kBT ¼ x and rewrite Eq. (4) as

Cpðμ; TÞ ¼ k2BT
Z

Dðμþ xÞx2 ex

ðex þ 1Þ2 dx: ð5Þ

Reference [46] called attention to the double-peak feature
in the function yðxÞ ¼ x2ðexpðxÞ=½1þ expðxÞ�2Þ, which is
plotted in Figs. 7(a) and 8(c). The specific heat is a
convolution of the DOS with the function yðxÞ.
Therefore, a narrow peak in the fermionic DOS D will

produce a linear-in-T splitting in Cp=T as T exceeds the
peak width, generating the so-called “double-peak” struc-
ture via Eq. (5). The T dependence of the double-peak
locations is shown in Fig. 7(b), which is very similar to
what is observed in Fig. 6(b). By setting the energy scale to
be E ¼ sgμBμ0H in Fig. 7(b), we can use the slope of the
fits obtained from Fig. 6(b) to estimate the g factor. For H
near 30 T, we find the g factor along the c axis to be 2.3(3)
or 2.4(2), based on the slope of orange and red linear fits
(k0) obtained from Fig. 6(b), respectively. These values are
consistent with the experimental value g ¼ 2.19 when
H k c as reported in Ref. [25]. This remarkable observation
provides strong support for the fermionic nature of the
excitation. In the fermionic spinon picture, a possible origin
of the narrow peak is that it could be due to a Van Hove
singularity away from the Fermi level in one of the spinon
bands. The double-peak structure in specific heat has been
studied in the graphite, due to the Landau quantization [46],
as well as in the Kondo metal CeRu2Si2 [47] and the Kondo

FIG. 6. Double-peak structure in the derivative of the specific
heat. (a) Field dependence of the derivative of the specific heat
dCp=dH at different T with a constant offset 7 mJ=K=T=mol-Cu
for clarity. H0� indicates the peak-splitting field in dCp=dH at
0 K. (b) The orange and red circles are field locations of two
peaks shown by the orange and red dashed lines in (b). The
orange and red lines in (b) are two linear fits for the correspond-
ing data points, while the hollow red circles are excluded
from the fits.

FIG. 7. The origin of double-peak structure. (a) The temper-
ature evolution of yðxÞ ¼ x2 expðxÞ=½1þ expðxÞ�2, where x ¼
ðE − μÞ=kBT and μ is the chemical potential. (b) The temperature
dependence of the locations of two peaks in (a), which can be
described by the linear equations E − μ ¼ �2.4kBT.
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insulator YbB12 [48], where it arises from the singularity in
the DOS at a Lifshitz transition. This distinctive feature in
specific heat provides a powerful tool for distinguishing
fermionic excitations from magnetic transitions. To our
knowledge, this is the first observation of a double-peak
structure in a 3-eV band gap insulator, providing strong
evidence for the charge-neutral fermionic nature of exci-
tations in YCOB above the 1=9 plateau.

F. Dirac spinon model simulation

In Sec. III D, we introduced a Dirac spinon model with a
sketched band structure, which is valid near H0. Building
on this model and motivated by the observation of the
double-peak structure, we attempt to extend our spinon
model to field H� by proposing a simplified DOS for the

spin-down bands, which incorporates a Dirac node at H0

and a Van Hove singularity at H�. The parabolic bands of
spin up providing a constant γc ¼ 8 mJ=K2=mol-Cu in
Fig. 4(e) are still valid and are ignored in the following
simulation.
The DOS used in our simulation is adapted from

the DOS of graphene [49], which features a Dirac node
at E ¼ 0 and a Van Hove singularity at E ¼ t, where t is the
nearest-neighbor hopping energy. Here, we assume the
spinon band structure of down spin in YCOB is given by

E↓ðkÞ ¼ μ↓ðH0Þ þ EgðkÞ; ð6Þ

where EgðkÞ is [49]

EgðkÞ ¼ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2 cosð

ffiffiffi
3

p
kyaÞ þ 4 cos

� ffiffiffi
3

p

2
kya

�
cos

�
3

2
kxa

�s
: ð7Þ

Here, a is the lattice parameter, and t is determined by the
energy level of the Van Hove singularity at H�. By setting
t ¼ 0.54 meV, μ↓ðH0Þ ¼ 1

2
gμBμ0H0, and g ¼ 2.2, the

resulting DOS for E↓ > μ↓ðH0Þ part, derived from
Eq. (6), is depicted as the blue area in Figs. 8(c)–8(e).
Meanwhile, the function yðxÞ as we defined before,
centered at the chemical potential, is shown as the red
curve. The heat capacity C is then calculated by the
convolution of the DOS with yðxÞ using Eq. (5). The
calculated C is illustrated in Fig. 8(a). At H ¼ H0,
corresponding to Fig. 8(c), the spin-down chemical poten-
tial μ↓ðH0Þ crosses the Dirac node, resulting in a minimum
value of C, as indicated by the valley at H0 in Fig. 8(a) at
low temperatures. The symbols H�, H�

L, and H
�
R denote the

field location of the Van Hove singularity at 0 K and the left
and right peaks after splitting at finite temperatures,
respectively. In Figs. 8(d) and 8(e), as the field increases
to H�

L and H�
R, the integration in Eq. (5) yields two local

maxima, leading to the double-peak structure observed
around H� in Fig. 8(a) at low temperatures.
To compare the simulation with experiments, the loca-

tions of the double peak in both experimental and simulated
results, taken from Figs. 3 and 8(a), are plotted in Fig. 8(b).
The temperature evolution of the field location for the left
(H�

L) and right (H�
R) peaks shows good agreement, provid-

ing support for the presence of a Van Hove singularity in
the fermionic DOS. Notably, the slope ofH�

L andH�
R differ,

which arises from the asymmetric shape of DOS near the
singularity. This effect has been discussed in detail in
Ref. [46]. We emphasize that the exact shape of DOS for
the spin-down bands remains unknown and may be more
complex than the simplified model we propose.
Furthermore, the model is not applicable to the peak at

Hp at the onset of the 1=9 plateau, shown in Fig. 3, which
we have earlier ascribed to bosonic excitations possibly
associated with a quantum critical point. The γ term and its
anisotropy also require a separate discussion, which we
present in the next section.
Using the proposed simplified DOS [blue curves in

Figs. 8(c)–8(e)], we can examine the relationship between
the 1=9 plateau phase and the double-peak structure. The
1=9 plateau corresponds to the linear DOS region which is
the signature of Dirac spinons extending up to around 28 T
(1.35 meV). The double-peak structure originating from the
Van Hove singularity in DOS is centered around 29.5 T
(1.88 meV). Thus, both the 1=9 plateau and the double-
peak feature arise from the spinon band structure, with the
double peak signaling a deviation from the Dirac band
dispersion.

G. Origin of the γ term and its anisotropy
in the one-ninth plateau

We begin by pointing out that the existence of a γ term in
the specific heat in a spin system is highly unusual. Awell-
studied example is the two-level systems in structurally
disordered insulators or spin-glass-like systems with com-
peting interactions. Compared with our measurements, the
γ terms are usually very small, because the number of two-
level sites with small energy differences is rare. On the
other hand, if the specific heat is dominated by a bosonic
mode, the mode must have a k2 2D dispersion as in a
ferromagnet. This seems unlikely to be the case in YCOB.
On the other hand, in the spinon model, what is needed is a
spinon Fermi surface and a linear T term has been found in
the organic materials κ-ðBEDT-TTFÞ2Cu2ðCNÞ3 [50] and
EtMe3Sb½PdðdmitÞ2�2 [51] and given this interpretation.
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However, the strong anisotropy observed in the experiment
presented here poses a challenge to any model. We do not
claim to have a definite solution, but we can offer some
proposed directions.
Recall that, in the spinon model, at the middle of the

plateau at H ¼ H0 the spin-down chemical potential μ↓
crosses a Dirac spinon band, while the spin-up chemical
potential μ↑ crosses particlelike and holelike bands, form-
ing a spinon semimetal. This is shown in Fig. 4(e). This will
give a γ term in the specific heat. The question is why γ
should depend so strongly on field orientation. On general
grounds, we need spin-orbit coupling to break the rotational
symmetry in spin space, and, in this material, there is a
significant DM term, which is estimated to be about 15% of
the exchange term in magnitude. In the spinon picture, the
spinon dispersion can be affected by the DM term and
becomes dependent on the field orientation. The DOS for
the up-spin spinon depends sensitively on the band overlap,
which gives rise to the particlelike and holelike Fermi

surfaces shown in Fig. 4(e). This can be affected signifi-
cantly by the DM term.
In this connection, it is interesting to note that the double

peak feature at H� shown in Figs. 3(a) and 3(b) remains at
approximately 30 T for both H k ab and k c. This is not
what one would expect based on a spinon model with a
dispersion that is isotropic. In that case, one expects both
H0 and H� to shift proportional to the anisotropic g factor.
In other words, the saddle-point-induced peak is expected
to be at approximately 34 T. The fact that it does not shift
implies that the band structure has to be anisotropic, so that
the location of the saddle point relative to the Dirac
crossing as shown in Figs. 8(c)–8(e) has changed with
field orientation. As pointed out earlier, this is possible in
the presence of the DM term. Interestingly, the shift of this
relative position presents a possible explanation of the
anisotropy of γ. For H k ab, the double peak is only 6 T
away from H0, and its tail can add to the γ term, just as it
affected the γ term beginning at approximately 24 T for

FIG. 8. Double-peak structure simulation. (a) The simulated field dependence of heat capacity C under different temperatures for spin-
down bands based on the DOS shown in (c). H� marks the peak location at 0 K before splitting. H�

L and H�
R represent field locations of

the left and right branches, respectively, of the peak after splitting. (b) The red and orange diamonds represent T dependence of
simulated values ofH�

L andH�
R, respectively, while the red and orange triangles are the experiment data taken from Fig. 3(a). (c)–(e) The

blue area denotes the DOS of the spin-down bands model given by Eq. (6). The main feature is the Dirac node when μ↓ðHÞ ¼ μ↓ðH0Þ
and the singularity when μ↓ðHÞ ¼ μ↓ðH�Þ. The red curve is the function yðxÞ corresponding to the vertical scale on the left side.
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H k c. From this point of view, the large γ forH k ab seen in
Fig. 2 is a contribution from the tail of H�.
Yet another possible origin of anisotropy is the gauge

magnetic field, whose presence is needed to explain the
quantum oscillations reported in Ref. [35]. The origin of the
gauge magnetic field was proposed to be related to the DM
term [52]. The gauge magnetic field will affect the spinon
only when the applied magnetic field is along c. Thus, it is
possible that the gauge magnetic field suppresses the DOS
whenH is applied along c by opening a gap. Our attempt at
modeling this has not been entirely satisfactory, because it
required additional assumptions and parameters and will
not be reported here.
Our conclusion is that the anisotropy in γ is likely related

to the DM term, which can lead to a spinon dispersion that
depends on the direction of the magnetic field. The idea
remains preliminary and further theoretical and experimen-
tal work is needed for further clarification.

IV. DISCUSSION

Finally, we compare our observations with specific-heat
results in other QSL candidates. A finite γ value has been
reported in different frustrated systems. Notably, the famous
organic materials κ-ðBEDT-TTFÞ2Cu2ðCNÞ3 [50] and
EtMe3Sb½PdðdmitÞ2�2 [51] provided early evidence of spi-
non Fermi surface ground states. In another KHA material,
herbertsmithite, a Cp=T which can be extrapolated to a γ
value of 50 mJ=K2=mol has also been observed in high
magnetic field up to 34 T to suppress the local moment
contributions, but no 1=9 magnetization plateau has been
reported so far, and the field dependence of the specific heat
at high fields is featureless [53,54]. In our case, the 1=9
plateau phase exhibits specific-heat characteristics that are
entirely different from those of the conventional 1=3 plateau
previously reported in other systems. For instance, the sharp
λ-like peak feature in the T dependence of Cp around the
gapped 1=3 plateau phase boundary in some triangular
lattices, like Cs2CuCl4 [55] and Na2BaCoðPO4Þ2 [43], is a
signature of the transition into magnetically ordered states.
In contrast, no sharp peak has been observed in the T
dependence of Cp down to 0.46 K within the gapless 1=9
plateau phase as shown in Fig. 2. This difference strongly
suggests that the 1=9 plateau phase could be an exotic spin-
liquid plateau induced by the magnetic field [12].

V. CONCLUSIONS

In summary, we observed the unconventional 1=9
plateau in both the magnetization and specific heat in
YCOB. The temperature dependence of the specific heat
provides evidence that the 1=9 plateau is gapless with a
finite DOS. Further field-dependent analysis indicates there
could be a DSL in the 1=9 plateau phase centered at 21 T.
The observed near-unity Dirac Wilson ratio provides direct
thermodynamic proof of charge-neutral Dirac fermions in

YCOB. Moreover, a Van Hove singularity at around 30 T
can explain the double-peak structure observed at 30 T,
thereby providing strong evidence for the fermionic nature
of the excitation. The strong anisotropy of the γ term is a
surprising feature that shows that spin-orbit coupling
effects may be at play. Our results provide direct low-
energy excitation information to understand the 1=9 plateau
phase, providing evidence for an exotic DSL state asso-
ciated with this plateau. These discoveries constitute a
significant step in the search for QSL and the study of
quantum entangled states.
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APPENDIX: SPECIFIC HEAT DUE TO
ADDENDA, SCHOTTKY, AND PHONON

CONTRIBUTIONS

As mentioned in Sec. II, the specific heat of the YCOB
H1 sample was measured by a membrane-based nano-
calorimeter, which includes contributions from both the
setup, referred to as the addenda, and the sample. The
specific-heat contribution from the addenda is unavoidable
and must be accounted for in the analysis. Here, we
evaluate the specific heat from the addenda.
The specific-heat measurements of the addenda were

conducted using the same membrane-based nanocalorim-
eter before loading the sample in 16T-SCMX at NHMFL.

THERMODYNAMIC EVIDENCE OF FERMIONIC BEHAVIOR IN … PHYS. REV. X 15, 021076 (2025)

021076-11



The temperature dependence of the total specific heat
measured with the YCOB H1 sample and without the
sample (addenda) is shown in Fig. 9(a). From the inset, it
can be observed that the specific heat of the addenda
saturates at 12 T for low temperatures (below 1.5 K). This
saturation at higher fields is likely attributed to the
suppression of the Schottky anomaly, as discussed later.
The field dependence of Cp from addenda at 0.46 K is
given in Fig. 9(b), alongside the total Cp from the YCOB
sample for comparison. The 0 T peak in the Cp of addenda
is consistent with the Schottky anomaly, which explains the
peak at 0.5 T in the YCOB sample data. It should be noted
that the peak caused by the Schottky anomaly in the Cp of
addenda appears incomplete due to a lack of data points.

From the comparison, it is evident that the addenda
contributes a small and nearly constant fraction (less than
5%) to the total specific heat when the field exceeds 10 T at
fixed low temperatures. Since the low-field data for the
YCOB sample include the Schottky anomaly from the
addenda, this study focuses exclusively on the analysis
above 10 T. We emphasize that all the data presented in the
main text are derived by subtracting the addenda data at
16 T, shown in Fig. 9(a) as the green curve, from the total
specific heat, to isolate the pure response from the YCOB
sample.
To further analyze the specific heat from YCOB, we used

the following expression:

Cp ¼ Csc þ Cph þ Cka; ðA1Þ

where Csc is the Schottky-like contribution arising from the
localized excitations, which likely originates from the
addenda, Cph is the conventional phonon contribution,
and Cka is the specific heat originating from the kagome
plane. As shown in Fig. 1(b) in the main text, a Schottky-
like anomaly was observed at a low-field range (< 0.3 T) in
both directions, which can be fitted by a two-level Schottky
model:

Csc ¼ f
NAkBΔ2eΔ=T

T2ð1þ eΔ=TÞ2 ; ðA2Þ

where f is the fraction of orphan spins, Δ is the energy
gap following Δ ¼ gμBμ0H=kB þ Δ0 with a field-indepen-
dent gap Δ0. The fitted result is shown in Fig. 10(a) using
parameters f ¼ 0.087%, g ¼ 2, and Δ0 ¼ 0.6 K. We
note that, compared with the Cp data (H k c) shown in
Fig. 1(b), the data in Fig. 10(a) have been adjusted by
subtracting a linear term, CpðHÞ ¼ kL · μ0H, where
kL ¼ 0.42 mJ=K=T=mol-Cu. This subtraction was per-
formed to correctly fit the Schottky anomaly, as the linear
term is attributed to the YCOB kagome plane rather than
the Schottky anomaly. Csc quickly decays and becomes
negligible when the field is higher than 10 T. To estimate
the contribution of Cph, we applied a Debye-Einstein
function [25] to fit Cp versus T from 30 to 110 K:

3Cph ¼
9RT3

Θ3
D

Z
ΘD=T

0

ξ4eξ

ðeξ − 1Þ2 dξ

þ R
T2

X5
n¼1

wnΘ2
Ene

ΘEn=T

ðeΘEn=T − 1Þ2 ; ðA3Þ

where ΘD and ΘEn are fitting parameters and wn are the
weights for different ΘEn. The fitting result and fitted
parameters are shown in Fig. 10(b). The fitted Cph was
extended to low T and compared with the total specific heat
in Fig. 10(c), which shows that Cph is negligible when T is

Addenda
Addenda

Addenda

FIG. 9. Specific heat from addenda. (a) The temperature
dependence of the total specific heat measured with the YCOB
H1 sample (red and blue dots) and without the sample (addenda,
gray and green curves, under magnetic fields of 12 and 16 T). An
enlarged view of the addenda data is provided in the inset for
clarity. (b) The field dependence of the total specific heat
measured with the YCOB H1 sample (black dots) and without
the sample (addenda, orange diamonds) at 0.46 K.
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below 2 K. Therefore, we conclude that, in the region
(μ0H > 10 T, T < 2 K) that we focus on in this study, it
should be safe to use the estimate Cp ≈ Cka. High fields
naturally separate the intrinsic specific-heat contributions
induced by kagome frustrations from extrinsic localized
excitation parts produced by orphan spins or band
randomness [25,31,56] which have introduced controver-
sial results in the ground state at zero field [24,25,30].
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herbertsmithite, ZnCu3ðOHÞ6Cl2, J. Am. Chem. Soc. 132,
16185 (2010).

[18] Y. Y. Huang et al., Heat transport in herbertsmithite: Can a
quantum spin liquid survive disorder?, Phys. Rev. Lett. 127,
267202 (2021).

[19] M. A. de Vries, K. V. Kamenev, W. A. Kockelmann, J.
Sanchez-Benitez, and A. Harrison, Magnetic ground state
of an experimental S ¼ 1=2 kagome antiferromagnet, Phys.
Rev. Lett. 100, 157205 (2008).

[20] X.-H. Chen, Y.-X. Huang, Y. Pan, and J.-X. Mi, Quan-
tum spin liquid candidate YCu3ðOHÞ6Br2½BrxðOHÞ1−x�
(x ≈ 0.51): With an almost perfect kagomé layer, J. Magn.
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