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The van der Waals cluster magnet Nb3Cl8 has recently been shown to possibly host a quantum-spin-liquid ground
state. The Nb ions in this compound form a breathing kagome structure, where the magnetic moment comes from three
nearest Nb ions forming a molecular cluster with spin 1/2. Previous bulk measurements including magnetic susceptibility
and specific heat suggested the existence of spinon Fermi surfaces. Here we further probe the spin system by nuclear
magnetic resonance (NMR) and muon spin rotation and relaxation (µSR) techniques. We confirm that there is no magnetic
long-range order and the dynamical spin fluctuations persist down to 0.075 K. These results provide further evidence that
Nb3Cl8 may host a quantum spin liquid.
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Quantum spin liquids (QSLs) represent a class of phases
where quantum spins are highly correlated yet do not or-
der at very low or zero temperature.[1–4] While the exact
definition of QSLs is still lacking, the kagome structure
has been treated as one of the most important platforms to
search for QSLs due to its strong geometrical frustrations.[5]

Apart from the perfect one, the breathing kagome structure
has also attracted increasing interest theoretically.[6–13] In
this structure, the bond length changes alternately within
the hexagon, resulting in two kinds of triangles with differ-
ent bonds, as shown in Fig. 1(a). Different from the per-
fect kagome lattice, where each site hosts a magnetic mo-
ment, three magnetic ions on the breathing kagome lattice
can form a cluster with delocalized unpaired electrons to give
a net magnetic moment. These structures have been found
in (NH4)2[C7H14N][V7O6F18](DQVOF),[14,15] Mo3O13-
cluster-based materials (e.g., LiZn2Mo3O8, Li2ScMo3O8,
Li2In1−xScxMo3O8, and Na3Sc2Mo5O16),[16–22] and Nb3X8

(X = Cl, Br, I).[23–28] Many of them show no magnetic or-
der down to the lowest measurable temperatures and thus are

promising QSL candidates.
In Nb3Cl8 with a trigonal structure at room temperature,

Nb ions form breathing kagome layers that are connected by
weak van der Waals force.[23,24] At high temperatures, it is a
Mott insulator that can be well described by the single-band
Hubbard model.[25–27] The system exhibits paramagnetism at
high temperatures with an effective moment of approximately
1.7µB per three Nb ions, which corresponds to S = 1/2.[23,24]

This is explained by the Nb3 trimers, i.e., the small triangles
formed by the three nearest Nb ions, as shown in Fig. 1(b).
Since the intra-trimer and inter-trimer Nb–Nb bond distances
are about 2.81 Å and 3.93 Å, respectively, the bonding within
the trimer is believed to be metallic. Therefore, the trimer
should be treated as a whole with a valence state of [Nb3]8+,
comprising seven d electrons, which results in S = 1/2. Since
the trimers form a triangular lattice, it might be argued that
the magnetism should be understood as a 2D triangular lat-
tice too. While the system becomes non-magnetic below a
structural transition around 100 K, the magnetism can be re-
tained in powders or polycrystals, and heavily c-axis pressed
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single crystals that destroy the structural transition.[29] In-
triguingly, magnetic susceptibility and specific-heat measure-
ments suggested the existence of a possible QSL with spinon
Fermi surfaces.[29] This seems at odds with the Heisenberg
model on the triangular lattice, whose ground states are mag-
netically ordered,[3] considering that there should be no large
anisotropy and no long-range interactions in this system. On
the other hand, models on the breathing kagome lattice with
1/6 electron filling have predicted various kinds of QSLs, in-
cluding those with spinon Fermi surfaces.[6,7,11,12]
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Fig. 1. (a) Top view of the monolayer of Nb3Cl8 showing the breathing
kagome structure of Nb3 trimers. Light and dark green spheres represent
the Cl atoms above and below the Nb layer, respectively. (b) Schematic
picture of monolayer Nb3Cl8 with a frustrated S = 1/2 magnetic moment
centered in the [Nb3]

8+ trimer.

In this work, we further study the magnetic ground state
of polycrystalline Nb3Cl8 with the trigonal structure by both
NMR and µSR techniques. The 1/T1T of the NMR spectra
shows a Curie–Weiss temperature dependence with a nearly
zero Weiss temperature. The µSR measurements show that
there is no magnetic ordering down to 0.075 K. Moreover, the
relaxation rate shows no change below about 1 K and the dy-
namic part persists at longitudinal magnetic fields, suggesting
the QSL ground state of Nb3Cl8.

To avoid the structural transition that leads to a nonmag-
netic state at low temperatures, we utilized a polycrystalline
Nb3Cl8 sample for our study.[29] Polycrystalline Nb3Cl8 was
synthesized by solid-state reactions. High-purity Nb powder
(Alfa Aesar, 99.99%) and NbCl5 powder (Alfa Aesar, 99.9%)
were thoroughly mixed using a mortar and pestle in a molar ra-
tio of 7:8 and placed in an alumina crucible. The crucible was
then sealed in a quartz tube under vacuum, heated at 700 ◦C
for 48 hours, and naturally cooled to room temperature. NMR
measurements were conducted using a phase-coherent pulsed
NMR spectrometer. The spectra were obtained by integrat-
ing the spin echo as a function of frequency at B0 = 7.53 T.
The spin-lattice relaxation rate T1 was measured by using the

saturation–recovery method and determined by fitting to the
theoretical curve. The µSR measurements were carried out us-
ing the MuSR spectrometer with a dilution refrigerator (DR)
(0.075–2.0 K) and Variox cryostat (1.8–4.0 K) at the ISIS
Facility, Rutherford Appleton Laboratory, UK. The polycrys-
talline Nb3Cl8 samples were placed in a standard 30×30 mm
thin silver sample holder. Measurements were performed in
the longitudinal geometry of the µSR spectrometer in true zero
magnetic field (ZF) and in applied longitudinal fields (LF)
with respect to the initial muon spin polarization. A 20 Oe
weak transverse field (wTF) calibration measurement was also
performed.
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Fig. 2. (a) The left and right panels display 37Cl- and 35Cl-NMR spectra at
an external field B0 = 7.53 T for various temperatures, respectively. Solid
lines represent the fit by Lorentzian function. (b) The temperature depen-
dence of FWHM of 35Cl-NMR line. The dashed line is a guide to the eye.
(c) The temperature dependence of 1/T1T measured at the 35Cl-NMR line.
The solid line is the fit result using Eq. (1) as described in the text.

We start with the NMR results on the chlorine. Since
both 35Cl and 37Cl nuclei, with spin I = 3/2, have a nuclear
quadrupole moment that couples to the electric field gradient,
three sets of NMR lines would be detected in their NMR spec-
tra. However, for the polycrystalline sample, the orientation
of grains is random without any preferred direction. The dis-
tribution of the angle between the applied magnetic field and
the c-axis results in spectrum broadening. As a result, only
one broad peak is observed in both 35Cl and 37Cl NMR spec-
tra, as shown in Fig. 2(a). No change in the spectra is observed
around 100 K, demonstrating that the structural transition is in-
deed suppressed.[29] Below about 30 K, both spectra become
broader. Figure 2(b) shows the temperature dependence of
the full width at half maximum (FWHM) of the 35Cl NMR
line, suggesting the enhancement of magnetic fluctuations at
low temperatures. Note that the existence of spin glass below
20 K has been ruled out by the magnetic-susceptibility mea-
surements reported previously.[23,24,29] The broadening of the
NMR spectra at low temperatures most likely originates from
the short-range order due to quenched disorders as observed
in other QSL candidates.[30] Figure 2(c) shows the tempera-
ture dependence of 1/T1T , which can be well fitted by the
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Curie–Weiss function

1
T1T

=

(
1

T1T

)
0
+

C
T −θ

, (1)

where (1/(T1T ))0 is the contribution from the density of states
at Fermi level, which is extremely small for this insulating
sample. The value of θ is −0.37±0.23 K, very close to zero,
suggesting that the staggered susceptibility tends to diverge at
zero temperature, at least down to 2 K.
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Fig. 3. (a) Time dependence of characteristic µSR spectra at zero field at
0.075 K, 1.0 K, 2.0 K and 4.0 K, respectively. Solid lines are fitted results
by Eq. (4). (b) Temperature dependence of the relaxation rate λ .

To further study the spin system of Nb3Cl8, we measured
the µSR spectra under both ZF and LF conditions at various
temperatures. Figure 3(a) shows some of the ZF results, where
neither oscillations nor a significant drop in initial asymmetry
is observed, indicating the absence of long-range magnetic or-
dering. We use a static Kubo–Toyabe polarization function
GKT (BL,∆ , t) multiplied by a stretched exponential relaxation
function to fit both ZF and LF data:[31,32]

AZF/LF(t) = AGKT (BL,∆ , t)e−(λ t)β

+Abg, (2)

where A is the initial asymmetry, ∆/γµ is the standard de-
viation of the static field distribution, γµ is the muon gyro-
magnetic ratio 2π × 135.5 MHz ·T−1, λ represents the relax-
ation rate, and Abg is a constant background. For LF mea-
surements with field BL, the static-Gaussian-longitudinal-field
Kubo–Toyabe function is

GKT (BL,∆ , t) = 1− 2∆ 2

γ2
µ B2

L

(
1− e−

1
2 ∆ 2t2

cos(γµ BLt)
)

+
2∆ 4

γ3
µ B3

L

∫ t

0
e−

1
2 ∆ 2τ2

sin(γµ BLτ)dτ. (3)

At zero field, equation (3) reduces to the static-Gaussian-zero-
field Kubo–Toyabe function as

GKT (0,∆ , t) =
1
3
+

2
3
(
1−∆

2t2)e−
∆2t2

2 . (4)

The ZF asymmetry AZF(t) at all measured temperatures
are in good agreement with Eq. (2) with β = 1. Note that the
values of the initial asymmetry A are different in the DR and
the Variox cryostat, without any loss of the initial asymme-
try. The analyses show that both A and Abg are very weakly
temperature and field dependent (A ≈ 0.25 and Abg ≈ 0.04
in the DR, and A ≈ 0.23 and Abg ≈ 0.03 in the Variox cryo-
stat). The value of ∆/γµ is 3.80 (0.03) Oe and essentially tem-
perature independent, showing that it is related to the nuclear
static field.[32] The temperature dependence of λ is shown in
Fig. 3(b). From 4 K down to 1 K, a slowing down of spin fluc-
tuations is observed, indicating an enhancement of short-range
interactions as T decreases.

The LF-µSR asymmetry spectra under selected external
applied longitudinal fields BL at 4.0 K, 1.8 K and 0.075 K are
displayed in Figs. 4(a), 4(b), and 4(c), respectively. The LF
asymmetry ALF(t) under 0 Oe < BL < 40 Oe can be well fit-
ted by Eqs. (2) and (3). The initial asymmetry A, ∆ and the
constant background Abg are set the same as those in the ZF
analysis. A field of 40 Oe (10 times ∆/γµ ) could decouple
the static fields at all temperatures, but the dynamic part still
exists up to 2000 Oe at 0.075 K, suggesting the important role
played by the dynamic spin fluctuations. When BL ≥ 40 Oe,
the spectra ALF(t) can be described by the stretched exponen-
tial relaxation function since GKT (BL,∆ , t)≈ 1,

ALF(t) = Ae−(λLFt)β

+Abg. (5)

Here, λLF is the relaxation rate, β is the stretching exponent.
The initial asymmetry A and the constant background Abg re-
main unchanged. The stretching exponent β can be fixed as 1
at 4.0 K, and fitted to be 0.89 (0.16) and 0.74 (0.14) at 1.8 K
and 0.075 K, respectively. The field dependence of λLF at
4.0 K, 1.8 K and 0.075 K is shown in Fig. 4(d).

For a fast-fluctuating spin dynamic system with the field
fluctuation rate ν , time correlation of spins S(t) takes the
form S(t) ∼ exp(−νt) and λLF(BL) can be described by the
Redfield formula λLF(BL) = 2∆ 2ν/(ν2 + γ2

µ B2
L), where ∆ 2 =

γ2
µ〈δB2〉.[33] However, in our case, λLF(BL) cannot be fitted

well by the Redfield model, suggesting a more general spin
autocorrelation function S(t) ∼ (τ/t)x exp(−νt).[34–37] Here,
τ and 1/ν are the early-time and late-time cutoffs, and x is the
power of the correlation function. λLF(BL) can be derived by
the general expression, as shown in Fig. 4(d),

λLF(BL) = 2∆
2
∫

∞

0

(
τ

t

)x
e−νtcos(γµ BLt)dt, (6)
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where ∆/γµ is the standard deviation of the local fields distri-
bution, and τ is an early time cutoff introduced to normalize
the correlation at t = 0. The solid lines in Fig. 4(d) denote the
fits using Eq. (6) with x = 0.40, 0.59, 0.36, and ν = 0.5 MHz,
1.2 MHz, 3.0 MHz at 4.0 K, 1.8 K, 0.075 K, respectively.
This shows the spin autocorrelation function S(t) decays like a
power law at low temperatures, which attenuates much slower
than the exponential function,[34–36,38] indicating the develop-
ment of long-time spin correlations.
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Fig. 4. Time dependence of longitudinal field µSR asymmetry spectra at
(a) 4.0 K, (b) 1.8 K, and (c) 0.075 K in selected external magnetic fields.
The solid lines are fitted results by Eqs. (3) and (5). (d) Field dependence
of the muon spin relaxation rate λLF(BL). The solid lines denote the fits
using Eq. (6) with x = 0.40, 0.59, 0.36, and ν = 0.5 MHz, 1.2 MHz,
3.0 MHz at 4.0 K, 1.8 K, 0.075 K, respectively.

These results, combined with our previous thermody-
namic measurements, demonstrate that Nb3Cl8 exhibits mag-
netic properties consistent with the expectation of a QSL, or
more precisely, a QSL with spinon Fermi surfaces, when its
high-temperature structure is preserved. Firstly, the nearly
zero value of θ in the Curie–Weiss fit of 1/T1T from NMR
spectra suggests no magnetic ordering down to very low
temperatures, which is confirmed by the µSR measurements
down to 0.075 K and aligns with the previously reported low-
temperature specific heat results.[29] Secondly, other potential
disordered states, such as spin-glass or random singlet phases,
have been ruled out by prior magnetic-susceptibility and spe-
cific heat measurements. Additionally, the LF µSR results in
this work also eliminate trivial quantum paramagnetism with-
out strong spin correlations, since the failure of fitting by the
Redfield formula for the LF µSR spectra and the introduction
of Eq. (6) clearly demonstrate that the spin system is highly
correlated spatiotemporally at very low temperatures, consis-
tent with the possible QSL state, as suggested by Ref. [37].
Moreover, the temperature independence of λ has also been
widely found in many QSL candidates.[36,37,39–47] Thirdly,
the QSL state in Nb3Cl8 probably hosts spinon Fermi sur-
faces, as previous results have shown temperature-independent
magnetic susceptibility and linear temperature dependence of
specific heat, and a Wilson ratio Rw close to 1.[29] Notably,

the sharp increase of λ below about 2 K [Fig. 3(b)] seems
to happen simultaneously with the low-temperature hump in
C/T ,[29] indicating that spin fluctuations play a dominant role
in different techniques. Whether these behaviors can be uni-
fied under the picture of spinon Fermi surfaces needs to be
further studied.

While the above discussions have followed traditional ap-
proaches to demonstrating a QSL state, it should be noted that
any method, including µSR and NMR, cannot provide crucial
information for the QSL alone. Results from different experi-
mental techniques and theoretical calculations have to be com-
pared and combined to obtain a unified picture. Our current
work suggests the importance of further study using more ex-
perimental methods, such as Raman and inelastic neutron scat-
tering. The possible QSL state may also support models on the
breathing kagome lattice with 1/6 electron filling,[6,7,11,12] in-
stead of those based on cluster magnets (a triangular lattice for
Nb3Cl8). Notably, compared to many other QSL candidates,
Nb3Cl8 may have two advantages. First, its band structure
can be readily described by the single-band Hubbard model,
which could lead to a better theoretical understanding com-
pared to other more complicated systems. Second, the fact
that Nb3Cl8 is a van der Waals material could make it easier
to apply methods that have been used in two-dimensional sys-
tems to provide more solid evidence for the QSL or even an
opportunity to develop devices.
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