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Themain driven force of the electronic nematic phase in iron-based superconductors is still
under debate. Here, we report a comprehensive study on the nematic fluctuations in a
non-superconducting iron pnictide system BaFe1.9−xNi0.1CrxAs2 by electronic transport,
angle-resolved photoemission spectroscopy (ARPES), and inelastic neutron scattering
(INS) measurements. Previous neutron diffraction and transport measurements suggested
that the collinear antiferromagnetism persists to x = 0.8, with similar Néel temperature TN
and structural transition temperature Ts around 32 K, but the charge carriers change from
electron type to hole type around x = 0.5. In this study, we have found that the in-plane
resistivity anisotropy also highly depends on the Cr dopings and the type of charge carriers.
While ARPES measurements suggest possibly weak orbital anisotropy onset near Ts for
both x = 0.05 and x = 0.5 compounds, INS experiments reveal clearly different onset
temperatures of low-energy spin excitation anisotropy, which is likely related to the energy
scale of spin nematicity. These results suggest that the interplay between the local spins on
Fe atoms and the itinerant electrons on Fermi surfaces is crucial to the nematic fluctuations
of iron pnictides, where the orbital degree of freedom may behave differently from the spin
degree of freedom, and the transport properties are intimately related to the spin dynamics.
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1 INTRODUCTION

Electronic nematic phase breaks the rotational symmetry but
preserves the translational symmetry of the underlying lattice in
correlated materials [1–4]. In iron-based superconductors, the
nematic order associated with a tetragonal-to-orthorhombic
structural transition at temperature Ts acts as a precursor of
themagnetic order below TN and the superconducting state below
Tc [5–10]. The nematic fluctuations can be described by the
electronic nematic susceptibility, which is defined as the
susceptibility of electronic anisotropy to the uniaxial in-plane
strain [11]. Divergent nematic susceptibility upon approaching Ts
from high temperature is revealed by the elastoresistance and
elastic moduli measurements, suggesting nematic fluctuations
well above Ts [12–16]. The nematic fluctuations commonly
exist in iron-based superconductors and are even present in
compounds with tetragonal crystal symmetry without any
static nematic order [17]. Accumulating evidence suggests that
the optimal superconductivity with maximum Tc usually occurs
near a nematic quantum critical point where the nematic
fluctuations are the strongest [18–29]. However, the charge,
spin, and orbital degrees of freedom are always intertwined in
the presence of nematic fluctuations [30–39], giving a twofold
rotational (C2) symmetry in many physical properties [5–11,
40–44] including anisotropic in-plane electronic resistivity and
optical conductivity [45–51], lifting of degeneracy between dxz/dyz
orbitals [52–58], anisotropic spin excitations at low energies
[59–63], phonon-energy split in lattice dynamics [64, 65], and
splitting of the Knight shift [66, 67]. In addition, it has been
proposed that the local anisotropic impurity scattering of
chemical dopants likely induces the twofold symmetry in the
transport properties [68–70]. Such complex cases make it is
difficult to clarify the main driven force of nematic phase by a
single experimental probe.

Our previous works suggest that the Cr substitution is an
effective way both to suppress the superconductivity and to tune
the magnetism in iron-based superconductors [27, 71–73].
Specifically, in the BaFe1.9−xNi0.1CrxAs2 system, by
continuously doping Cr to the optimally superconducting
compound BaFe1.9Ni0.1As2 with Tc = 20 K, the
superconductivity is quickly suppressed above x = 0.05, but
the magnetic transition temperature TN and the structural
transition temperature Ts remain between 30 and 35 K as
shown by neutron diffraction results on naturally twinned
samples (Figure 1A). Moreover, the effective moment m is
significantly enhanced first and then suppressed for dopings
higher than x = 0.5, where the charge carriers change from
electron type to hole type as shown by the sign of Hall and
Seebeck coefficients [73]. These make BaFe1.9−xNi0.1CrxAs2 a rare
example to separately tune the magnetically ordered temperature
TN by the local spin interactions and the magnetically ordered
strength by the scattering of itinerant electrons on Fermi surfaces,
respectively. The extra holes introduced by Cr substitutions
compensate the electron doping thus may drive those non-
superconducting compounds to a half-filled Mott insulator
similar to the parent compounds of cuprate and nickelate
superconductors [74–79]. It would be interesting to monitor

the evolution of the nematic fluctuations starting from a
metallic state toward to a localized insulating state [79–81],
especially on the detwinned samples (Figure 1B).

In this paper, we further report a multi-probe study on the
nematic fluctuations in the non-superconducting compounds
BaFe1.9−xNi0.1CrxAs2 (x = 0.05 ~ 0.8) by electronic transport,
angle-resolved photoemission spectroscopy (ARPES), and
inelastic neutron scattering (INS) measurements. The in-plane
resistivity anisotropy measured in the detwinned samples under
uniaxial pressure shows a strong dependence on the Cr content
with a clear sign change above x = 0.6. By focusing on two
compounds with x = 0.05 and 0.5, ARPES measurements suggest
possible band shifts induced by orbital anisotropy near Ts/TN for
both dopings, but INS experiments reveal clearly different
behaviors on the spin nematicity. The onset temperature of
low-energy spin excitation anisotropy between Q = (1, 0, 1)
and Q = (0, 1, 1) for x = 0.05 is about 110 K, but for x = 0.5,
it is much lower, only about 35 K near the magnetic transition.
Such temperature dependence of spin nematicity is consistent
with the results of in-plane resistivity anisotropy. At high
energies, the spin nematicity for x = 0.05 extends to about
120 meV, much larger than the case for x = 0.5 (about
40 meV), suggesting a possible linear correlation between the
highest energy scale and the onset temperature of spin nematicity.
Therefore, the nematic behaviors in iron pnictides are highly
related to the interplay between local moments and itinerant
electrons. While the C2-type anisotropies in spin excitations and
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FIGURE 1 | (Color online) Phase diagram and in-plane resistivity
anisotropy of BaFe1.9−xNi0.1CrxAs2. (A) The PM, AF, and SC mark the region
of paramagnetic, antiferromagnetic, and superconducting phases defined by
Ts, TN, and Tc, respectively. Here, Ts and TN were measured by neutron
diffraction in our previous work on the naturally twinned samples [73]. (B) The
gradient color maps the in-plane resistivity anisotropy δρ measured on
detwinned samples. The vertical dashed line divides the regions for electron-
type and hole-type charge carriers as determined by the sign of Hall and
Seebeck coefficients [73].
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in-plane resistivity are strongly correlated with each other [60],
the orbital anisotropy induced band splitting may behave
differently as affected by the complex Fermi surface topology
[82–91].

2 EXPERIMENT DETAILS

High-quality single crystals of BaFe1.9−xNi0.1CrxAs2 were grown
by the self-flux method [71–73, 92–95]; the characterization
results of our sample can be found in previous reports [71,
73]. The crystalline directions of our sample were determined
by an X-ray Laue camera (Photonic Sciences) in the backscattering
mode with incident beam along the c − axis. After that, the
crystals were cut into rectangle shapes (typical sizes: 1 mm ×
2 mm) by a wire saw under the directions [1, 0, 0] × [0, 1, 0] in
orthorhombic lattice notation (a = b = 5.6 Å). By applying a
uniaxial pressure around 10 MPa, the crystal can be fully
detwinned at low temperature, where the direction of pressure
was defined as the b direction, and the pressure-free direction was
defined as the a direction [60–63, 96–99]. The in-plane resistivity
(ρa,b) was measured by the standard four-probe method with the
Physical Property Measurement System (PPMS) from Quantum
Design. To compare the temperature dependence of resistivity at
different directions, we normalized the resistivity ρa,b(T) data at
150 K for each sample. The in-plane resistivity anisotropy was
defined by δρ = (ρb − ρa)/(ρb + ρa) same as other literature [45–47].

ARPES experiments were performed at beamline 10.0.1 of the
Advanced Light Source and beamline 5-4 of the Stanford
Synchrotron Radiation Light source with R4000 electron
analyzers. The angular resolution was 0.3°, and the total
energy resolution was 15 meV. All samples were cleaved in-
situ at 10 K and measured in ultra-high vacuum with a base
pressure lower than 4 × 10–11 Torr. We note that we used twinned
samples without uniaxial pressure for the ARPES experiments.
INS experiments were carried out at two thermal triple-axis
spectrometers: PUMA at Heinz Maier-Leibnitz Zentrum
(MLZ) [100], Germany, and TAIPAN at the Australian Centre
for Neutron Scattering (ACNS) [101], ANSTO, Australia. The
wave vector Q at (qx, qy, qz) was defined as (H, K, L) = (qxa/2π,
qyb/2π, qzc/2π) in reciprocal lattice units (r.l.u.) using the
orthorhombic lattice parameters a ≈ b = 5.6 Å and c ≈ 13 Å.
All measurements were done with fixed final energy Ef = 14.8
meV, and a double focusing monochromator and analyzer using
pyrolytic graphite crystals. To gain a better signal-noise ratio,
eight pieces of rectangularly cut crystals (typical sizes: 7 mm ×
8 mm × 0.5 mm) were assembled in a detwinned device made by
aluminum and springy gaskets [60–63]. To reach both Q = (1, 0,
1) and Q = (0, 1, 1), the sample holder was designed to easily
rotate by 90°, thus the scattering plane can switch from [H, 0, 0] ×
[0, 0, L] to [0, K, 0] × [0, 0, L]. The total mass of the crystals used
in INS experiments was about 2 g from each sample set of x = 0.05
and x = 0.5. Time-of-flight neutron scattering experiments were
carried out on the same sample sets at 4SEASONS spectrometer
(BL-01) at J-PARC [102, 103], Tokai, Japan, with multiple
incident energies Ei = 250, 73, 34, 20 meV, ki parallel to the c
axis, and chopper frequency f = 250 Hz. The data were only

corrected by the efficiency of detectors from the incoherent
scattering of vanadium with white beam. As we were
comparing two samples with similar mass under the same
measured conditions at the same spectrometer, it was not
necessary to do the vanadium normalization with mono-beam.
The data were analyzed by the Utsusemi and MSlice software
packages [104, 105].

3 RESULTS AND DISCUSSIONS

We first present the resistivity results in Figures 1-3. Apparently,
the in-plane resistivity anisotropy show a strong dependence on
the Cr doping level. In the Cr free sample BaFe1.9Ni0.1As2, the
difference between ρa and ρb presents above the superconducting
transition temperature Tc = 20 K, where ρa is metallic and ρb is
semiconducting-like with an upturn at low temperature (namely,
ρa < ρb) (Figure 2A). The superconductivity is completely
suppressed at x = 0.05, and there is a dramatic difference
between ρa and ρb with an anisotropy δρ persisting to about
T = 110 K (Figure 2B). By further increasing Cr doping, both ρa
and ρb become semiconducting-like even insulating-like above
x = 0.1, and the resistivity anisotropy gets weaker and weaker,
until it nearly disappears at x = 0.5 and 0.6 compounds
(Figure 2C–H). For those high doping compounds x = 0.7
and 0.8, it seems that δρ changes sign with ρa > ρb at low
temperatures (Figure 2I,J). To clearly compare the resistivity
anisotropy upon Cr doping, we plot δρ as gradient color mapping
in Figure 1B and show its detailed temperature dependence in
Figure 3. Interestingly, the sign of δρ is also related to the type of
charge carriers. δρ keeps strong and positive in the electron-type
compounds but changes to negative and weak (< 1%) in the
hole-type compounds (Figure 1B and Figure 3B). This is
consistent with the results in the electron doped BaFe2−x(Ni,
Co)xAs2 and the hole doped Ba1−xKxFe2As2, Ca1−xNaxFe2As2,
and BaFe2−xCrxAs2 systems [45–48, 106–109]. However, in those
cases, the onset temperature of δρ decreases with the structural
transition temperature Ts when increasing the doping level from
the non-superconducting parent compounds to optimally doped
superconducting compounds. Here, in the BaFe1.9−xNi0.1CrxAs2
system, both TN and Ts are actually within the range 32 ~ 35 K for
all probed dopings [73], but the onset temperature of δρ still
extends to high temperatures, and it is then strongly suppressed
by Cr doping (Figure 3A). In those hole-type compounds, δρ
shows a peak feature (for x = 0.5 and 0.6) or a kink (for x = 0.7 and
0.8) responding to the magnetic and structural transitions
(Figure 3B). The non-monotonic behavior of δρ may come
from the competition between the scattering from hole bands
and electron bands, and similar behaviors were observed in the
nematic susceptiblity of the Cr doped BaFe2(As1−xPx)2
system [27].

Next, we focus on the electronic structure and the spin
excitations in two typical dopings x = 0.05 with TN = 32 K
and x = 0.5 with TN = 35 K. The Fermi surface topology and
band structure measured by ARPES on naturally twinned
samples are shown in Figure 4. From the Fermi surface
mapping in Figure 4A,B, we can find typical hole pockets
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around the zone center Γ point. Near the X point, an electron
pocket is observed for x = 0.05. For x = 0.5, however, the Fermi
surface resembles that of the hole-doped (Ba,K)Fe2As2 [53]. This
is due to the hole doping introduced by the Cr substitution, which
also introduces disorder directly in the Fe-planes, thus resulting
in spectral features that appear broad [82]. Figure 4C,D show the

second energy derivatives of the spectral images along the high
symmetry direction (Γ-X). Larger hole pockets can indeed be seen
for x = 0.5 compared to x = 0.05. As has been demonstrated
previously on BaFe2As2, NaFeAs, and FeSe, the onset of Ts is
associated with the onset of an observed anisotropic shift of the
dxz and dyz orbital-dominated bands where the dxz band shifts
down and the dyz band shifts up [52–56]. This shift is most
prominently observed near the X point of the Brillouin zone.
Moreover, such band splitting as measured on uniaxially strained
crystals can be observed above Ts in the presence of this
symmetry-breaking field. On a structurally twinned crystal, the
anisotropic band shifts would appear in the form of a band
splitting due to domain mixing. While we do not observe clearly
the band splitting as shown in Figure 4C,D, we can clearly
observe the lower branch with dominant intensity that shifts
with temperature. This can be understood as the lower dxz band.
We can fit the energy position of the band extracted from the X
point and plot as a function of temperature. The temperature
evolution clearly identifies a temperature scale associated with an
onset of the band shift [53–55]. As shown in Figure 4E,F, the X
band shifts at low temperature T ≈ 25 K for x = 0.05 and T ≈ 45 K
for x = 0.5, respectively, closing to their structural or magnetic
transition temperatures. We do note that while we cannot
conclusively state that this represents the orbital anisotropy,
the behavior we observe here on these twinned crystals is
consistent with the expectation of the onset of orbital
anisotropy [52, 57, 62]. We note here that the observed onset
temperature of band splitting is close to the Ts (or TN), in contrast
to the much higher onset in the resistivity anisotropy shown in
Figure 3 measured on a strained crystal.

We then turn to search the connection between the
resistivity anisotropy and the spin excitation anisotropy. The
first evidence of spin nematicity was observed in BaFe2−xNixAs2
(x = 0, 0.065, 0.085, 0.10, 0.12) [60–63], where BaFe1.9Ni0.1As2

FIGURE 2 | (Color online) In-plane resistivity anisotropy of BaFe1.9−xNi0.1CrxAs2 under uniaxial pressure. Here, ρb is the in-plane resistivity along the direction of
uniaxial pressure, and ρa is the in-plane resistivity perpendicular to the direction of uniaxial pressure. For easy comparison, each curve is normalized by its resistivity at
150 K, and there is no resistivity anisotropy above this temperature.

A

B

FIGURE 3 | (Color online) Temperature dependence of the in-plane
resistivity anisotropy δρ from x = 0.05 to 0.8. (A) In electron-type compounds,
δρ gets weaker but keeps positive when increasing Cr doping. (B) In hole-type
compounds, δρ is very weak and becomes negative when x ≥0.7.
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is the starting compound of this study. Low-energy spin
excitations are measured on the detwinned
BaFe1.9−xNi0.1CrxAs2 (x = 0.05 and 0.5) samples by INS
experiments using two triple-axis spectrometers. The results
of constant-energy scans at E = 3, 6, 9, and 12 meV are
summarized in Figure 5. With convenient design of the
detwinned device and sample holder, we can easily perform
constant-energy scans (Q − scans) either along the [H, 0, 1] or
[0, K, 1] direction after rotating the whole sample set by 90°. For
the x = 0.5 sample, we instead do the S1 rocking scans at Q = (1,
0, 1) and (0, 1, 1). It should be noticed that the Néel temperature
TN is slightly enhanced by the applied uniaxial pressure in the

x = 0.05 sample from 32 to 40 K (so does Ts) but does not
change for the x = 0.5 sample (TN ≈ TN′ � 35 K) (Figure 6A,B).
Such an effect has been detected in the BaFe2−x(Ni, Co)xAs2
system [110]. The detwinned ratio can be estimated by
comparing the integrated intensities of magnetic Bragg peak
between Q = (1, 0, 1) and Q = (0, 1, 1) positions, which is about
10:1 for the x = 0.05 samples, and 4:1 for the x = 0.5 samples,
respectively. Such a large ratio means successful detwin for both
sample sets. At the first glance, it is very clear for the difference
of the spin excitations between Q = (1, 0, 1) and Q = (0, 1, 1)
especially at low temperatures, which could be attributed to the
spin Ising-nematic correlations (so-called spin nematicity).

FIGURE 4 | (Color online) ARPES results on x = 0.05 (left) and x = 0.5 (right) compounds. (A)–(B) The measured Fermi surfaces around the Γ and X points. (C)–(D)
Band dispersions along the high symmetry direction Γ-X obtained from the second derivatives in the energy direction. (E)–(F) Temperature dependence of the fitted band
position from the X point. All dashed lines are guides for eyes.
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After warming up to high temperatures, the spin excitations at
Q = (1, 0, 1) decrease and become nearly identical to those at
Q = (0, 1, 1). The nematic order parameter for the spin system

can be approximately represented by χnematic″ � χ10″ − χ01″ , in
which χ10″ (or χ01″ ) is the local spin susceptibility at Q = (1, 0, 1)
(or Q = (0, 1, 1)). Figure 6C,D show the temperature

FIGURE 5 | (Color online) Inelastic neutron scattering results on the spin excitations of uniaxially detwinned samples for x = 0.05 (left) and x = 0.5 (right) compounds
measured by two triple-axis spectrometers TAIPAN and PUMA. We compared the constant-energy scans (Q −scans along [H,0,1] or [0, K,1], S1 rocking scans at
Q = (1,0,1) or (0, 1, 1)) for E = 3, 6, 9, 12 meV, respectively. All data are corrected by a linearly Q −dependent background, and the solid lines are Gaussian fittings. The
spurious signals in 6 meV data are ignored.

FIGURE 6 | (Color online) The order parameter of antiferromagnetism and spin nematicity χ10″ − χ01″ for x = 0.05 and x =0.5 compounds. (A) and (B) The magnetic
order parameters measured atQ = (1,0,3) on twinned samples,Q = (1,0,1) andQ = (0,1,1) on detwinned samples by elastic neutron scattering. All data are subtracted by
the normal state background and normalized by the intensity at base temperature forQ = (1,0,3) orQ = (1,0,1). (C) and (D) Spin nematicity measured by inelastic neutron
scattering. The solid symbols are the differences of local susceptibility χ′′ between Q = (1,0,1) and Q = (0,1,1) (left y-axis), and the open symbols are similar but
obtained by integrating the constant-energy scans in Figure 5 corrected by the Bose population factor (right y-axis). The vertical dash lines mark the magnetic transition
temperature TN on twinned samples and TN′ on detwinned samples. All solid lines are guides to eyes.
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dependence of χ10″ − χ01″ for both compounds, where the Bose
population factor is already corrected. We also plot the data
(open symbols) obtained from the integrated intensity of those
Q − scans in Figure 5. For the x = 0.05 compound, the spin
nematicity decreases slightly upon increasing energy and
terminates well above TN′ � 40 K (Figure 6C)73. For the
lowest energy we measured (3 meV), the onset temperature
of spin nematicity is about 110 K, similar to the in-plane
resistivity anisotropy in Figure 3A. The results for x = 0.5
compound show markedly differences, where χ10″ − χ01″ quickly
decreases with both energy and temperature, and the onset
temperature is around TN′ � 35 K (Figure 6D). No spin
anisotropy can be detected above 40 K for both Q − scans

and energy scans, and this is also consistent with the very weak
in-plane resistivity anisotropy for x = 0.5 (Figure 3B). The spin
nematic theory predicts that the nematic fluctuations enhance
both the intensity and the correlation length of spin excitations
at (π, 0) but suppress those at (0, π) even above Ts. This was
firstly testified in the detwinned BaFe1.935Ni0.065As2 and can
also be seen here in Figure 561. Although the peak intensities at
Q = (1, 0, 1) seem stronger than those at Q = (0, 1, 1) in
Figure 5G,H, the peak width is smaller, and the integrated
intensity of the Q-scans are closed to each other. The above
results of spin nematicity in BaFe1.9−xNi0.1CrxAs2 (x = 0.05 and
0.5) resemble to those in BaFe2−xNixAs2, where spin excitations
at low energies change from C4 to C2 symmetry in the tetragonal

FIGURE 7 | (Color online) Inelastic neutron scattering results on the spin excitations of the uniaxially detwinned samples for x = 0.05 (left) and x = 0.5 (right)
compounds measured at T = 5 K by time-of-flight spectrometer 4SEASONS. All data are presented in both 2D slices for the [H, K] plane and 1D cuts along [H,0] or [0, K]
at typical energy windows E = 3±1,15±2,42±4,110±10 meV. The solid lines are Gaussian fittings guiding for eyes, which are not shown in panel (P) due to poor data
quality. The dashed diamonds in panel (D) and (L) illustrate the integrated Brillouin zone for spin excitations around Q = (1,0) and Q = (0,1), respectively.
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phase at temperatures approximately corresponding to the
onset of the in-plane resistivity anisotropy.

Moreover, INS experiments on detwinned BaFe2As2 and
BaFe1.9Ni0.1As2 suggest that the spin anisotropy can persist to very
high energy [62, 63], even in the later case the splitting of the dxz and dyz
bands nearly vanishes [57]. To quantitatively determine the energy
dependence of spin excitation anisotropy, we have performed time-of-
flight INS experiments on the uniaxially detwinned
BaFe1.9−xNi0.1CrxAs2 (x = 0.05 and 0.5), and the results are shown
inFigures 7, 8. It should be noted that for such experiments, the energy
transfer is always coupled with L due to ki ‖ c [102, 103]. The two-
dimensional (2D) energy slices and one-dimensional (1D) cuts along
[H, 0] and [0, K] at various energies are presented in Figure 7. Indeed,
the spin excitations are twofold symmetric below 100meV for both
compounds. The spin excitations at E = 3meV, Q = (0, ±1) are very
weak in the x = 0.05 compound, then continuously increase upon
energy, and become nearly the same as Q = (±1, 0) around 110meV.
For the x = 0.5 compound, although the spin excitations atQ = (0, ±1)
can be initially observed at E = 3meV, the spin anisotropy still exists at
15meV and then disappears above 42meV. To further compare the
spin excitations in both compounds, we have calculated the total spin
fluctuations χ10″ + χ01″ and the spin nematicity χ10″ − χ01″ from the
integrated intensity marked by the dashed diamonds in Figure 7D,L.
In principle, the local dynamic susceptibility χ′′ can be estimated from
the integration outcome of the spin excitations within one Brillouin
zone, and here χ′′ can be simply calculated through dividing the
integration signal in theQ = (0, 0) (1, 1), (2, 0), (1,−1) boxes, giving the
diamond shape integration zone [8]. The total spin susceptibility χ10″ +
χ01″ in the x = 0.5 compound is stronger than that in x = 0.05 but

decays much quickly with energy (Figure 8A,C). The spin nematicity
χ10″ − χ01″ apparently has different energy scales for two compounds,
where it is about 120meV for x = 0.05 but only 40meV for x = 0.5,
respectively. The energy scale of χ10″ − χ01″ in the superconducting
compound BaFe1.9Ni0.1As2 is 60meV [62], and for the parent
compound BaFe2As2, it is about 200meV up to the band top of
the spin waves [63]. These facts lead to a possible linear correlation
between the highest energy and the onset temperature of spin
nematicity at low energy (inset of Figure 8D). Within the
measured energy range, both χ10″ + χ01″ and χ10″ − χ01″ can be fit
with a power-law dependence on the energy, ~ A/Eα, where the
amplitude A and exponent α are listed in each panel of Figure 8.
Indeed, the larger value of α for x = 0.5 in comparison to that for x =
0.05 suggests faster decaywith energy for both the spin fluctuations and
the spin nematicity. Similar fitting on the results of BaFe1.9Ni0.1As2
gives parameters in between them [62]. Although the low energy data
below 10meVmay be affected by the L-modulation of spin excitations,
and by the superconductivity in BaFe1.9Ni0.1As2, the similar quantum
critical behavior both for χ10″ + χ01″ and χ10″ − χ01″ in these three
compounds is expected by the Ising-nematic scenario [60–63].

In our previous neutron diffraction results on the
BaFe1.9−xNi0.1CrxAs2 system, the Cr dopings have limited effects
on the magnetically ordered temperature TN but significantly
enhance the effective ordered moment m by reaching a maximum
value at x = 0.5 [73]. The Néel temperature TN is mostly determined
by the local magnetic coupling related to the local FeAs4 tetrahedron
structure. The evolution of orderedmoment probably induced by the
changes of the density of states and the orbital angular momentum
from itinerant electrons on the Fermi surfaces. The Cr doping

FIGURE 8 | (Color online) Energy dependence of the total spin fluctuations χ10″ + χ01″ and the spin nematicity χ10″ − χ01″ of uniaxially detwinned samples for x =0.05
(left) and x =0.5 (right) compounds. Different symbols correspond to different incident energies in the measurements. Both of χ10″ + χ01″ and χ10″ − χ01″ can be fitted with a
power-law dependence on the energy, ~ A/Eα, where the amplitude A and exponent α are listed in each panel. The inset of panel (D) shows the correlation between the
highest energy and the onset temperature at low energy of χ10″ − χ01″ .
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introduces both local distortion on the lattices and hole doping on the
Fermi pockets, yielding a non-monotonic change of the conductivity
of charge carriers. As shown in Figure 2, the low-temperature upturn
of resistivity is enhanced by Cr doping first but then weakens in those
hole-type compounds. Among these dopings, x = 0.5 has the most
insulating-like behavior, and thus strongly localized charge carriers
and maximum ordered moment, but its spin nematicity quickly
drops down for both the temperature and energy dependence. In
contrast to the magnetically ordered strength, both the structural
transition temperature Ts and the lattice orthorhombicity δ = (a − b)/
(a + b) are nearly Cr doping independent [73]. This means the static
nematic order is also nearly Cr independent in this system, as
opposed to the case for dynamic nematic fluctuations.

The nature of the iron-based superconductor can be theoretically
described as a magnetic Hund’s metal, in which the strong interplay
between the local spins on Fe atoms and the itinerant electrons on
Fermi surfaces gives correlated electronic states [80, 81]. Indeed,
time-of-flight INS experiments on the detwinned BaFe2As2 suggest
that the spin waves in the parent compound are preferably described
by a multi-orbital Hubbard–Hund model based on the itinerant
picture with moderate electronic correlation effects, instead of a
Heisenbergmodel with effective exchange couplings from local spins.
Upon warming up to high temperatures, the intensities of spin
excitation anisotropy decrease gradually with increasing energy and
finally cut off at an energy away from the band top of spinwaves [63].
Therefore, the energy scale of spin nematicity sets an upper limit for
the characteristic temperature for the nematic spin correlations, as
well as the onset temperature of resistivity anisotropy. Here, by
adding up the results on the in-plane anisotropies of resistivity,
orbital energy, and spin excitations in BaFe1.9−xNi0.1CrxAs2, they
clearly suggest that the electronic nematicity is intimately related to
the spin dynamics, which seems consistent with Hund’s metal
picture. Specifically, by doping Cr to suppress the
superconductivity in BaFe1.9Ni0.1As2, it makes the charge carriers
initially localized with enhanced electron correlations [73], which
may enhance the electronic correlations by increasing the intra- and
inter-orbital onsite repulsion U as well as Hund’s coupling JH [63],
and thus gives rise to stronger spin excitations and larger spin
anisotropy in the Cr doping x = 0.05 compound. Another effect
is the lifting up of dyz and dxy along the Γ-X direction to the Fermi
level, which primarily contributes to the effective moments [80]. The
orbital-weight redistribution triggered by the spin order suggests that
the orbital degree of freedom is coupled to the spin degree of freedom
[111]. By further increasing Cr doping to x = 0.5, the localization
effect is so strong that the electron system becomes insulating at low
temperature. In this case, the itinerant picture based onHund’smetal
may not be applicable anymore. The low density of itinerant
electrons weakens the nematic fluctuations and probably limits
them inside the magnetically ordered state. In either case for x =
0.05 or x = 0.5, the band splitting does not directly correspond to the
spin nematic correlations but only present below the nematic
ordered temperature. This may attribute to the weak spin–orbit
coupling in this system, as the spin anisotropy in spin space can only
present at very low energies [59]. In addition, our results can rule out
the picture of local impurity scattering driven nematicity since the
impurity scattering from Cr substitutions is certainly stronger in the
x = 0.5 compound, but it does not promote the nematic fluctuations.

4 CONCLUSION

In conclusion, we have extensively studied the in-plane resistivity
anisotropy, orbital ordering, and spin nematicity in a non-
superconducting BaFe1.9−xNi0.1CrxAs2 system. We have found
that the Cr doping strongly affect the anisotropy of resistivity and
spin excitations along with the itinerancy of charge carriers.
While the onset temperatures of resistivity anisotropy and spin
nematicity are similar and correlated with the energy scale of spin
anisotropy, the orbital anisotropy shows an onset temperature
irrelevant to them. These results suggest that the electronic
correlations from the interplay between local moments and
itinerant electrons are crucial to understand the nematic
fluctuations, thus inspiring the quest for the driven force of
the electronic nematic phase in iron-pnictide superconductors.
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